Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Protein complex found to regulate first step in human blood clotting


Brown scientists have described a previously unknown but critical blood-clotting role for Arp2/3, a complex of seven proteins found in animal and plant cells.

Reporting in the June 15 issue of Blood, the scientists show that Arp2/3 complex is a cellular machine that drives a human blood platelet to change shape into a larger, more flattened form and begin the process of clotting. The link between what happens at the surface of a platelet and the mechanism of shape change within it has mystified scientists for decades. Arp2/3 has been found in yeast and a soil amoeba, as well as platelets.

“A major question for scientists has been how to control platelet shape change,” said the project’s senior researcher, Elaine Bearer, M.D., associate professor of pathology and laboratory medicine. “Understanding these molecular events could lead to better treatments for abnormal clotting.” Roughly 80 percent of strokes are caused by atypical clots that block blood flow.

Bearer and colleagues found that Arp2/3 complex is required for platelets to form the shape-changing filaments that begin the blood clotting process. The process of filament formation is called actin polymerization.

Actin filaments are fine threads composed of multiple subunits – polymers that line up like a sting of pop beads – which give structure to the cell, as well as drive shape changes, cell movements and other cellular processes. These filaments also participate in muscle contractions. The formation of filaments inside dividing cells also separates cytoplasm into the two daughter cells, so that each inherits the right amount of maternal material.

Since the first cell was observed under a microscope more than 200 years ago, scientists have sought to explain cellular shape change. Cell shape is used today for the pathologic diagnosis of tumors such as breast cancer. For 50 years, scientists have known that actin was required for shape change. Until now, they were unable to explain what drove actin to polymerize and form filaments.

Polymerization of actin is an important first step in the process of platelet clot formation. Platelets use these filaments to reach out and grab fibrin, the major matrix material of clots, and other platelets, to form the clots.

When a blood vessel is torn, molecules are released that bind to platelet surface receptors. This creates a cascade of events inside the first platelets that arrive at the wound, which change shape, sending out sticky arms into the blood flow to recruit other platelets that attach in an organized matrix to stop the bleeding and maintain the vessel.

Stroke, which results from abnormal clotting, is treated with blood thinning compounds to block platelets from forming clots. “A problem with this therapy is that it may completely stop platelet activity and a person may bleed to death,” Bearer said. “We would like to find a gentler way to block polymerization without this dangerous side effect.”

Cell biologists guessed that Arp2/3 complex played a role in nucleating new actin filaments because it did so in a test tube. Although many proteins play a similar role in test tubes, none has been found to be required in cells. Bearer and colleagues are the first to demonstrate that Arp2/3 complex plays a central role in nucleating actin filaments inside a cell.

“We think there are about 10 biochemical events between the cell and the polymerization process,” she said. “Each step triggers the next event in a pathway that culminates in polymerization. We’d like to learn how to control this process.”

Actin polymerization occurs in cells across the class of creatures called eukaryota. These include all animals, plants, fungi, algae and protozoa. Eukaryota share fundamental characteristics of cellular organization, biochemistry and molecular biology.

“Showing that the Arp2/3 complex is a major regulator in platelet actin dynamics leads us to believe that it plays this role in all cells, because all cells have shape-changing abilities that are required for many vital cell processes,” Bearer said. “Beyond representing a significant advance in the understanding of molecular events leading to platelet shape change, this work is likely to provide fundamental information about the principles and paradigms governing actin dynamics inside all cells.”

The Brown scientists developed new molecular-insertion technology – a model for testing the internal mechanisms of cells – to help them describe both the role of Arp2/3 as well as where it is located and activated during the stages of filament formation. The technology allowed researchers to “reach inside and tickle” the tiny platelets, without destroying them.

“It made it possible to manipulate the molecular composition of the platelet cytoplasm,” Bearer said. “This allowed us to investigate biochemical relationships between signaling pathways and the shape changes that occur in platelets but are common to all cells. The method provides a new model to test the effect of small molecules on signal pathways and shape changes in other human cells and other cell types.”

Besides Bearer, the research team included Zhi Li, lead author and doctoral student, and undergraduate Eric Kim. Both Li and Kim graduated in May 2002. Funding from the National Institutes of General Medical Sciences of the National Institutes of Health, a Salomon Research Award and the Brown University Undergraduate Teaching and Research Assistantships Program supported the work.

Scott Turner | EurekAlert

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>