Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Humans Inhabited New World’s Doorstep for 20,000 Years

13.02.2008
The human journey from Asia to the New World was interrupted by a 20,000-year layover in Beringia, a once-habitable region that today lies submerged under the icy waters of the Bering Strait.

Furthermore, the New World was colonized by approximately 1,000 to 5,000 people — a substantially higher number than the 100 or fewer individuals of previous estimates.

The developments, to be reported by University of Florida Genetics Institute scientists in the open-access journal PLoS ONE on February 13, help shape understanding of how the Americas came to be populated — not through a single expansion event that is put forth in most theories, but in three distinct stages separated by thousands of generations.

“Our model makes for a more interesting, complex scenario than the idea that humans diverged from Asians and expanded into the New World in a single event,” said Connie Mulligan, Ph.D., an associate professor of anthropology at the College of Liberal Arts and Sciences and assistant director of the UF Genetics Institute. “If you think about it, these people didn’t know they were going to a new world. They were moving out of Asia and finally reached a landmass that was exposed because of lower sea levels during the last glacial maximum, but two major glaciers blocked their progress into the New World. So they basically stayed put for about 20,000 years. It wasn’t paradise, but they survived. When the North American ice sheets started to melt and a passage into the New World opened, we think they left Beringia to go to a better place.”

... more about:
»Bering »Beringia »DNA »anthropology

UF scientists analyzed DNA sequences from Native American, New World and Asian populations with the understanding that modern DNA is forged by an accumulation of events in the distant past, and merged their findings with data from existing archaeological, geological and paleoecological studies.

The result is a unified, interdisciplinary theory of the “peopling” of the New World, which shows a gradual migration and expansion of people from Asia through Siberia and into Beringia starting about 40,000 years ago, a long waiting period in Beringia where the population size remained relatively stable, and finally a rapid expansion into North America through Alaska or Canada about 15,000 years ago.

“This was the raw material, the original genetic source for all of the Americas,” said Michael Miyamoto, Ph.D., a professor and associate chairman of zoology in UF’s College of Liberal Arts and Sciences. “You can think of the people as a distinct group blocked by glaciers to the east. They had already been west, and had no reason to go back. They had entered this waiting stage and for 20,000 years, generations were passing and genetic differences were accumulating. By looking at the kinds and frequencies of these mutations in modern populations, we can get an idea of when the mutations arose and how many people were around to carry them.”

Working with mitochondrial DNA — passed exclusively from mothers to their children — and nuclear DNA, which contains genes from both parents, UF scientists essentially added genetic information to what had been known about the archaeology, changes in climate and sea level, and geology of Beringia.

The result is a detailed scenario for the timing and scale of the initial migration to the Americas, more comparable to an exhaustive video picture rather than a single snapshot in time.

“Their technique of reading population history by using coalescence rates to analyze genetic data is very impressive — innovative anthropology and edge-of-the-seat population study,” said Henry C. Harpending, Ph.D., a distinguished professor and endowed chairman of anthropology at the University of Utah and a member of the National Academy of Sciences who was not involved with the research. “The idea that people were stuck in Beringia for a long time is obvious in retrospect, but it has never been promulgated. But people were in that neighborhood before the last glacial maximum and didn’t get into North America until after it. It’s very plausible that a bunch of them were stuck there for thousands of years.”

As for Beringia, sea levels rose about 10,000 to 11,000 years ago, submerging the land and creating the Bering Strait that now separates North America from Siberia with about 100 kilometers of open, frigid water.

“Our theory predicts much of the archeological evidence is underwater,” said Andrew Kitchen, a Ph.D. candidate in the anthropology department at UF who participated in the research. “That may explain why scientists hadn’t really considered a long-term occupation of Beringia.”

UF researchers believe that their synthesis of a large number of different approaches into a unified theory will create a platform for scientists to further analyze genomic and non-genetic data as they become available.

Andrew Hyde | alfa
Further information:
http://www.plosone.org/doi/pone.0001596

Further reports about: Bering Beringia DNA anthropology

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>