Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Humans Inhabited New World’s Doorstep for 20,000 Years

13.02.2008
The human journey from Asia to the New World was interrupted by a 20,000-year layover in Beringia, a once-habitable region that today lies submerged under the icy waters of the Bering Strait.

Furthermore, the New World was colonized by approximately 1,000 to 5,000 people — a substantially higher number than the 100 or fewer individuals of previous estimates.

The developments, to be reported by University of Florida Genetics Institute scientists in the open-access journal PLoS ONE on February 13, help shape understanding of how the Americas came to be populated — not through a single expansion event that is put forth in most theories, but in three distinct stages separated by thousands of generations.

“Our model makes for a more interesting, complex scenario than the idea that humans diverged from Asians and expanded into the New World in a single event,” said Connie Mulligan, Ph.D., an associate professor of anthropology at the College of Liberal Arts and Sciences and assistant director of the UF Genetics Institute. “If you think about it, these people didn’t know they were going to a new world. They were moving out of Asia and finally reached a landmass that was exposed because of lower sea levels during the last glacial maximum, but two major glaciers blocked their progress into the New World. So they basically stayed put for about 20,000 years. It wasn’t paradise, but they survived. When the North American ice sheets started to melt and a passage into the New World opened, we think they left Beringia to go to a better place.”

... more about:
»Bering »Beringia »DNA »anthropology

UF scientists analyzed DNA sequences from Native American, New World and Asian populations with the understanding that modern DNA is forged by an accumulation of events in the distant past, and merged their findings with data from existing archaeological, geological and paleoecological studies.

The result is a unified, interdisciplinary theory of the “peopling” of the New World, which shows a gradual migration and expansion of people from Asia through Siberia and into Beringia starting about 40,000 years ago, a long waiting period in Beringia where the population size remained relatively stable, and finally a rapid expansion into North America through Alaska or Canada about 15,000 years ago.

“This was the raw material, the original genetic source for all of the Americas,” said Michael Miyamoto, Ph.D., a professor and associate chairman of zoology in UF’s College of Liberal Arts and Sciences. “You can think of the people as a distinct group blocked by glaciers to the east. They had already been west, and had no reason to go back. They had entered this waiting stage and for 20,000 years, generations were passing and genetic differences were accumulating. By looking at the kinds and frequencies of these mutations in modern populations, we can get an idea of when the mutations arose and how many people were around to carry them.”

Working with mitochondrial DNA — passed exclusively from mothers to their children — and nuclear DNA, which contains genes from both parents, UF scientists essentially added genetic information to what had been known about the archaeology, changes in climate and sea level, and geology of Beringia.

The result is a detailed scenario for the timing and scale of the initial migration to the Americas, more comparable to an exhaustive video picture rather than a single snapshot in time.

“Their technique of reading population history by using coalescence rates to analyze genetic data is very impressive — innovative anthropology and edge-of-the-seat population study,” said Henry C. Harpending, Ph.D., a distinguished professor and endowed chairman of anthropology at the University of Utah and a member of the National Academy of Sciences who was not involved with the research. “The idea that people were stuck in Beringia for a long time is obvious in retrospect, but it has never been promulgated. But people were in that neighborhood before the last glacial maximum and didn’t get into North America until after it. It’s very plausible that a bunch of them were stuck there for thousands of years.”

As for Beringia, sea levels rose about 10,000 to 11,000 years ago, submerging the land and creating the Bering Strait that now separates North America from Siberia with about 100 kilometers of open, frigid water.

“Our theory predicts much of the archeological evidence is underwater,” said Andrew Kitchen, a Ph.D. candidate in the anthropology department at UF who participated in the research. “That may explain why scientists hadn’t really considered a long-term occupation of Beringia.”

UF researchers believe that their synthesis of a large number of different approaches into a unified theory will create a platform for scientists to further analyze genomic and non-genetic data as they become available.

Andrew Hyde | alfa
Further information:
http://www.plosone.org/doi/pone.0001596

Further reports about: Bering Beringia DNA anthropology

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>