Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

1st evidence that nuclear transplantation (’therapeutic cloning’) can eliminate tissue rejection

03.06.2002


Heart ’patches’ and functioning kidney units cloned in cows



Advanced Cell Technology, Inc. (ACT) reported today that nuclear transplantation can be used to generate functional immune-compatible tissues. The research, which will appear in the July issue (cover story) of Nature Biotechnology, by ACT and its collaborators, provides the first experimental evidence that it may be possible to use cloning to generate medically important tissues and eliminate tissue rejection. Heart ’patches’ and miniature kidneys engineered from cloned cells were successfully tested in a large-animal model, the cow, which has a sophisticated immune system similar to that of humans.
"These results bode well for the future of human therapeutic cloning," said Robert Lanza, Vice President of Medical & Scientific Development at ACT, and lead author of the study. "Cloning could theoretically provide a limitless supply of cells and organs for any type of regenerative therapy. Before now, therapeutic cloning as a means of preventing rejection was criticized by some as being purely theoretical – just an idea. This study furnishes the first scientific evidence that cloned tissues can be transplanted back into animals without being destroyed by the body’s immune system. The use in medicine to generate immune-compatible cells using cloning would overcome one of the major scientific challenges in transplantation medicine - namely, the problem of organ and tissue rejection."

The goal of nuclear transplantation is to clone genetically matched cells and organs for transplantation into patients suffering from a wide range of disorders that result from tissue loss or dysfunction. In addition to patients with heart, lung, liver and/or kidney disease, millions more suffer from diabetes, arthritis, AIDS, strokes, cancer and other diseases that may one day be treatable using this technology. It has been estimated that by the year 2010 over 2 million patients will suffer from end-stage kidney disease alone, at an aggregate cost of over $1 trillion dollars during the coming decade.



Although nuclear transplantation could theoretically be used to generate immune-compatible cells and tissues for these patients, numerous studies have shown that animals produced by cloning inherit the DNA in their mitochondria (the organelles that supply energy to the cell) entirely or in part from the recipient egg and not the donor cell. The presence of these foreign genes raises the question whether ’non-self’ proteins in cloned cells could lead to rejection after transplantation and defeat the main objective of the procedure. The Nature Biotechnology paper reports that cloned cells were not rejected in cattle despite the presence of the foreign mitochondrial DNA. The immune system in cattle is relatively complex; therefore, these "preclinical" studies suggest human applications may be possible.

In addition to creating skeletal muscle and heart ’patches,’ nuclear transplantation was used to generate immune-compatible kidney units with the ability to excrete toxic metabolic waste products through a urinelike fluid. The renal units not only survived and functioned as kidneys, but immunological studies carried out both in the transplanted animals and in the laboratory confirmed that there was no rejection response to the cloned tissues.

"This was a study to investigate how the immune system would deal with cloned tissue in an animal model," said Michael D. West, President & C.E.O. at ACT and an author on the paper. "In such an animal model, we judged it appropriate to produce cloned bovine fetuses to generate the needed cells. In the case of human medical applications, we are strongly advocating that the technology should only be used to clone human embryonic stem cells not an actual pregnancy. We, therefore, strongly support Senate Bill S. 2439 promoted by Senators Kennedy, Feinstein, Hatch and Specter that would protect the life-saving uses of cloning technology while banning its abuse in cloning a human fetus or child."


###
The researchers of the paper from Advanced Cell Technology, collaborated with scientists from Harvard Medical School and Children’s Hospital, Boston; the Mayo Clinic, Rochester, Minnesota; and the University of Miami School of Medicine, Miami, Florida. The paper’s other authors are Catherine Blackwell of ACT; Anthony Atala, Hoyun Chung, James J. Yoo, Gunter Schuch, and Shay Soker of Children’s Hospital; Peter J. Wettstein, Nancy Borson, and Erik Hofmeister of the Mayo Clinic; and Carlos T. Moraes of the University of Miami School of Medicine.

Advanced Cell Technology is a biotechnology company focused on discovering and commercializing the applications of cloning technology in human medicine and animal science.

Robert Lanza | EurekAlert
Further information:
http://www.advancedcell.com

More articles from Life Sciences:

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

nachricht Self-assembled nanostructures hit their target
23.09.2016 | King Abdullah University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>