Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT develops thin-film 'micro pharmacy'

12.02.2008
A new thin-film coating developed at MIT can deliver controlled drug doses to specific targets in the body following implantation, essentially serving as a "micro pharmacy."

The film could eventually be used to deliver drugs for cancer, epilepsy, diabetes and other diseases. It is among the first drug-delivery coatings that can be remotely activated by applying a small electric field.

"You can mete out what is needed, exactly when it's needed, in a systematic fashion," said Paula Hammond, the Bayer Professor of Chemical Engineering and senior author of a paper on the work appearing in the Feb. 11 issue of the Proceedings of the National Academy of Sciences.

The film, which is typically about 150 nanometers (billionths of a meter) thick, can be implanted in specific parts of the body.

... more about:
»Devices »Micro »thin-film

The films are made from alternating layers of two materials: a negatively charged pigment and a positively charged drug molecule, or a neutral drug wrapped in a positively charged molecule.

The pigment, called Prussian Blue, sandwiches the drug molecules and holds them in place. (Part of the reason the researchers chose to work with Prussian Blue is that the FDA has already found it safe for use in humans.)

When an electrical potential is applied to the film, the Prussian Blue loses its negative charge, which causes the film to disintegrate, releasing the drugs. The amount of drug delivered and the timing of the dose can be precisely controlled by turning the voltage on and off.

The electrical signal can be remotely administered (for example, by a physician) using radio signals or other techniques that have already been developed for other biomedical devices.

The films can carry discrete packets of drugs that can be released separately, which could be especially beneficial for chemotherapy. The research team is now working on loading the films with different cancer drugs.

Eventually, devices could be designed that can automatically deliver drugs after sensing that they're needed. For example, they could release chemotherapy agents if a tumor starts to regrow, or deliver insulin if a diabetic patient has high blood sugar.

"You could eventually have a signaling system with biosensors coupled with the drug delivery component," said Daniel Schmidt, a graduate student in chemical engineering and one of the lead authors of the paper.

Other lead authors are recent MIT PhD recipients Kris Wood, now a postdoctoral associate at the Broad Institute of MIT and Harvard, and Nicole Zacharia, now a postdoctoral associate at the University of Toronto.

Because the films are built layer by layer, it is easy to control their composition. They can be coated onto a surface of any size or shape, which offers more design flexibility than other drug-delivery devices that have to be microfabricated.

"The drawback to microfabricated devices is that it's hard to coat the drug over a large surface area or over an area that is not planar," said Wood.

Another advantage to the films is that they are easy to mass-produce using a variety of techniques, said Hammond. These thin-film systems can be directly applied or patterned onto 3D surfaces such as medical implants.

Stefani Wrightman, a 2006 MIT graduate, and Brian Andaya, a recent graduate of the University of Rochester and summer intern at the MIT Materials Processing Center, are also authors on the paper. The research was funded by the National Science Foundation, the Office of Naval Research and MIT's Institute for Soldier Nanotechnologies. Written by Anne Trafton, MIT News Office

Elizabeth A. Thomson | MIT News Office
Further information:
http://web.mit.edu/newsoffice/www

Further reports about: Devices Micro thin-film

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>