Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greener extraction of one of nature’s whitest minerals

11.02.2008
From medicine to make-up, plastics to paper - hardly a day goes by when we don't use titanium dioxide.

Now researchers at the University of Leeds have developed a simpler, cheaper and greener method of extracting higher yields of one of this most useful and versatile of minerals.

In powder form titanium dioxide (TiO2) is widely used as an intensely white pigment to brighten everyday products such as paint, paper, plastics, food, medicines, ceramics, cosmetics - and even toothpaste. Its excellent UV ray absorption qualities make it perfect for sunscreen lotions too.

TiO2 is also a precursor material for titanium metal production. In metal form it’s strong and lightweight and is used in the aerospace and electronics industries as well as being used to strengthen golf clubs and fishing rods. It is also inert and biocompatible, making it suitable for medical devices and artificial implants.

... more about:
»Mineral »TiO2 »dioxide »titanium »yield

As such, it’s hardly surprising that the global market for this important mineral is some £7 billion per year.

Unfortunately, despite its relative abundance in nature(1), it’s natural occurrence is never pure, being bound with contaminant metals such as iron, aluminium and radio-active elements.

Pigment grade TiO2 is produced from mineral ore by smelting, then treating the slag with chlorine, or by directly introducing it into a sulphuric acid solution. These two processes generate toxic and hazardous wastes. The treatment of such wastes is expensive and complex.

Prof Jha’s patented process consists of roasting the mineral ore with alkali to remove the contaminants, which are washed and leached with acid to yield valuable by-products for the electronics industry. The coarse residue left behind is then reacted with 20 times less than the usual amount of chlorine to produce titanium dioxide powder.

The Leeds process gives an average yield of up to 97 per cent TiO2, compared with the current industry average of 85 per cent. This level of purity will reduce production costs of pigment grade materials and waste disposal costs. In addition, the process also recycles waste CO2 and heat.

Furthermore, Prof Jha is confident that the process can be further refined to yield 99 per cent pure titanium dioxide.

“Researchers have sought a sustainable replacement for current processes for many years,” says Professor Animesh Jha, from the University’s Faculty of Engineering. “Our aim was to develop new technology for complex minerals of titanium dioxide that are particularly low-grade and whilst readily available in the world market, can’t yet be extracted economically,” he says.

“Our process is a real world breakthrough, because it can be used for both lower and richer grades of ores and it overcomes major environmental concerns about having to neutralise and discharge wastes generated in the process that end up going into contamination ponds.”

“We’re excited about the possibilities for this method of mineral purification; we believe it could be applied to other important minerals with similar complexity, making it a credible potential extraction process for the future,” he says.

Prof Jha and his colleagues have formed an industrial partnership with Millennium Inorganic Chemicals – the world’s second largest TiO2 producer - to develop this technology on a larger scale. The research was funded by the Sustainable Technology Initiative Programme of DTI in collaboration with the Engineering and Physical Science Research Council (EPSRC) and Millennium Inorganic Chemicals.

Jo Kelly | alfa
Further information:
http://www.leeds.ac.uk/media/index.htm

Further reports about: Mineral TiO2 dioxide titanium yield

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>