Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greener extraction of one of nature’s whitest minerals

11.02.2008
From medicine to make-up, plastics to paper - hardly a day goes by when we don't use titanium dioxide.

Now researchers at the University of Leeds have developed a simpler, cheaper and greener method of extracting higher yields of one of this most useful and versatile of minerals.

In powder form titanium dioxide (TiO2) is widely used as an intensely white pigment to brighten everyday products such as paint, paper, plastics, food, medicines, ceramics, cosmetics - and even toothpaste. Its excellent UV ray absorption qualities make it perfect for sunscreen lotions too.

TiO2 is also a precursor material for titanium metal production. In metal form it’s strong and lightweight and is used in the aerospace and electronics industries as well as being used to strengthen golf clubs and fishing rods. It is also inert and biocompatible, making it suitable for medical devices and artificial implants.

... more about:
»Mineral »TiO2 »dioxide »titanium »yield

As such, it’s hardly surprising that the global market for this important mineral is some £7 billion per year.

Unfortunately, despite its relative abundance in nature(1), it’s natural occurrence is never pure, being bound with contaminant metals such as iron, aluminium and radio-active elements.

Pigment grade TiO2 is produced from mineral ore by smelting, then treating the slag with chlorine, or by directly introducing it into a sulphuric acid solution. These two processes generate toxic and hazardous wastes. The treatment of such wastes is expensive and complex.

Prof Jha’s patented process consists of roasting the mineral ore with alkali to remove the contaminants, which are washed and leached with acid to yield valuable by-products for the electronics industry. The coarse residue left behind is then reacted with 20 times less than the usual amount of chlorine to produce titanium dioxide powder.

The Leeds process gives an average yield of up to 97 per cent TiO2, compared with the current industry average of 85 per cent. This level of purity will reduce production costs of pigment grade materials and waste disposal costs. In addition, the process also recycles waste CO2 and heat.

Furthermore, Prof Jha is confident that the process can be further refined to yield 99 per cent pure titanium dioxide.

“Researchers have sought a sustainable replacement for current processes for many years,” says Professor Animesh Jha, from the University’s Faculty of Engineering. “Our aim was to develop new technology for complex minerals of titanium dioxide that are particularly low-grade and whilst readily available in the world market, can’t yet be extracted economically,” he says.

“Our process is a real world breakthrough, because it can be used for both lower and richer grades of ores and it overcomes major environmental concerns about having to neutralise and discharge wastes generated in the process that end up going into contamination ponds.”

“We’re excited about the possibilities for this method of mineral purification; we believe it could be applied to other important minerals with similar complexity, making it a credible potential extraction process for the future,” he says.

Prof Jha and his colleagues have formed an industrial partnership with Millennium Inorganic Chemicals – the world’s second largest TiO2 producer - to develop this technology on a larger scale. The research was funded by the Sustainable Technology Initiative Programme of DTI in collaboration with the Engineering and Physical Science Research Council (EPSRC) and Millennium Inorganic Chemicals.

Jo Kelly | alfa
Further information:
http://www.leeds.ac.uk/media/index.htm

Further reports about: Mineral TiO2 dioxide titanium yield

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>