Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Iron banded worms drying out of blood could be linked to Parkinsons & Alzheimers

Researchers at the University of Warwick in the UK and the Indian Institute of Technology Kanpur have discovered that the mechanism that we rely on to transport iron safely through our blood stream can, in certain circumstances, collapse into a state which grows long worm-like “fibrils” banded by lines of iron rust. This process could provide the first insight into how iron gets deposited in the brain to cause some forms of Parkinson’s & Alzheimer’s and Huntington’s diseases.

Human blood relies on a protein called transferrin to safely transport iron through the bloodstream to points were it can be usefully and safely used in the body. In most other circumstances exposed iron contains many dangers for human cells. When deposited in such a state in the brain it can play a role in neurodegenerative diseases such as Parkinson’s, Huntington’s and Alzheimer’s

Transferrin takes up iron out of bloodstream and transports it by a method that combines it with carbonate to bind to two sites on the surface of the transferrin protein. It then curls around the iron and seals it in, almost like a Venus flytrap plant, to prevent it from interacting with anything else until it reaches where it is needed and can safely be used.

The research team led by Professor Peter Sadler from the University of Warwick, and Professor Sandeep Verma from the Indian Institute of Technology, found that if they took transferrin and left it to dry out on a surface, molecules of the safe transporter of iron assembled themselves into tendril - or worm-like fibrils. Even more interestingly the iron that was once safely wrapped up inside the transferrin now appeared to be settling along the length of these fibrils plating them in a series of spots or bands along the length of the tendril shape. This leaves the iron dangerously exposed and available to interact in ways that could cause cell damage.

Deposits of iron exposed in this way and found in the brain are a possible cause of some forms of Parkinson’s, Alzheimer’s and Huntington’s diseases. Until now there has been no real idea as to how iron becomes deposited there in such a dangerous way. As it is essential for the brain to have iron safely delivered to it, this observation could provide the first real clue as to how that iron comes to be deposited there in such a dangerous way. The research chemists who led this study hope that neurology researchers will be able to build on this work to gain more understanding of how these forms of Parkinson’s, Huntington’s and Alzheimer’s occur and how they can be countered.

The full research paper entitled "Periodic Iron Nanomineralization in Human Serum Transferrin Fibrils", by Surajit Ghosh, Arindam Mukherjee, Peter J. Sadler, Sandeep Verma, has just been published in the online edition of Angewandte Chemie. The lead authors are Professor Peter Sadler from the University of Warwick, and Professor Sandeep Verma from the Indian Institute of Technology.

High res Picture of Professor Sadler with diagram of Iron banded fibril available at:


Peter Dunn | alfa
Further information:

Further reports about: Alzheimer Huntington’s Iron Parkinson Sadler banded blood fibril

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>