Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists confirm new virus responsible for deaths of transplant recipients in Australia

08.02.2008
Establishes high throughput genetic sequencing as powerful tool for pathogen discovery; technology enables improvements in screening for transplant safety

In the first application of high throughput DNA sequencing technology to investigate an infectious disease outbreak, scientists from Columbia University Mailman School of Public Health, the Victorian Infectious Diseases Reference Laboratory (VIRDL) in Melbourne, Australia, the Centers for Disease Control and 454 Life Sciences link the discovery of a new arenavirus to the deaths of three transplant recipients who received organs from a single donor in Victoria, Australia in April 2007. The full findings are published in the March 2008 issue of the New England Journal of Medicine and are now online.

After failing to implicate an agent using other methods including culture, PCR and viral microarrays, RNA from the transplanted liver and kidneys was analyzed using rapid sequencing technology established by 454 Life Sciences and bioinformatics algorithms developed at Columbia. Examination of tens or thousands of sequences yielded 14 that resembled arenaviruses at the protein level. Thereafter, the team cultured the virus, characterized it by electron microscopy and developed specific molecular and antibody assays for infection. The presence of virus in multiple organs, IgM antibodies in the organ donor and increasing titer of antibody in a recipient were used to implicate the virus as the cause of disease. The arenavirus lymphocytic choriomeningitis virus (LCMV) has been implicated in a small number of cases of disease transmission by organ transplantation, however, the newly discovered virus, which may be a new strain of LCMV, is sufficiently different that it could not be detected using existing screening methods.

“High throughput sequencing and methods for cloning nucleic acids of microbial agents directly from clinical samples offer powerful tools for pathogen surveillance and discovery,” stated W. Ian Lipkin, MD, John Snow Professor of Epidemiology and Professor of Neurology and Pathology at Columbia University and director of the Center for Infection and Immunity at the Mailman School of Public Health. He added, “As globalization of travel and trade brings new infectious agents into new contexts, speed and accuracy of pathogen identification are increasingly important when it can alter treatment, assist in containment of an outbreak, or, as in this case, enable improvements in screening that will enhance the safety of transplantation.”

Last spring, scientists from the Victorian Infectious Disease Reference Laboratory contacted Dr. Lipkin after their initial state-of-the-art investigation into the cause of the transplant patient deaths failed to turn up leads. Dr. Lipkin and his team built on their work, utilizing tools for pathogen surveillance and discovery developed at Columbia and 454 Life Sciences.

"The small pieces of viral genetic material recovered through this powerful high throughput sequencing method were used to design specific tests for detecting the virus in clinical samples and enabling detailed characterization.” said Gustavo Palacios, PhD, first author of the paper and assistant professor in the Center for Infection and Immunity at the Mailman School. Surveys at Columbia and the VIRDL revealed that viral RNA was present in a total of 22 out of 30 samples of tissue, blood, or cerebrospinal fluid from all three recipients, and the sequencing was identical in all samples, which is consistent with the introduction of a single virus into all transplant recipients. PCR surveys of other stored plasma specimens from solid organ transplant recipients in the same city and timeframe not linked to the cluster, revealed no evidence of infection with this pathogen. Sherif Zaki and colleagues at the CDC demonstrated the presence of the viral proteins in organs of recipients using antibodies to LCMV, and provided the first pictures of the virus by electron microscopy.

Dr. Lipkin and his team have demonstrated that this technology can be employed to address a wide variety of suspected infectious disease outbreaks. Examples of the successful application of molecular technologies in infectious diseases include the identification of Borna disease virus, Hepatitis C virus, West Nile virus, and SARS coronavirus, among others.

Randee Sacks Levine | EurekAlert!
Further information:
http://www.columbia.edu

Further reports about: Discovery Infectious Lipkin Organ Pathogen Samples Sequencing Viral transplant

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>