Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New cements for vertebral lesions

08.02.2008
A number of researchers at the Department of Polymer Science and Technology at the Chemistry Faculty from San Sebastian at the University of the Basque Country, led by Ms Isabel Goñi and Ms Marilo Gurrutxaga, are studying new formulae for acrylic copolymers and compounds in order to obtain efficacious, multiuse bone cements with reduced side effects.

Acrylic bone cements based on polymethylmetacrylate (PMMA) have been traditionally used in hip replacements in order to set the prothesis inside the bone. On the other hand, with new techniques such as vertebroplastia, the cement is injected into an affected vertebra by means of long and narrow needles, visualized with X rays.

Vertebroplastia is mainly applied in the treatment of vertebral fractures due to osteoporosis or bone tumours, with the aim of reinforcing the bone and alleviating the pain. It is a minimally invasive and rapid technique (~ 40 min/vertebra) and efficacious in alleviating pain (80-90% in 72 h) due to the mechanical reinforcement provided by the cement. Nevertheless, the risk of migration of the cement and of bone necrosis has to be taken into account given the exothermia of the polymerisation reaction and the toxicity of the monomer. Researchers at the Department of Polymer Science and Technology at the University of the Basque Country (UPV/EHU) focused on this, amongst other items, in this study.

Viscosity and radiopacity

... more about:
»Agent »PMMA »acrylic »effect »rays

The formulae used for the cement in vertebroplasty consist basically of the monomer, PMMA pearls and a radiopaque agent. This last ingredient is what enables the visualisation of the cement mass during the injection. These formulae have to comply principally with the following requisites: appropriate viscosity and high radiopacity. The cement has to have a certain consistency so as not to drip, and sufficient fluidity to be injected, as well as being highly visual with X rays, so that the surgeon can see what is being injected.

In order to adapt the traditional formulae to new applications, surgeons usually modify the cements when operating, in order to facilitate their injection, either adding more monomer in liquid phase to reduce viscosity and increase the time for working or, otherwise, increasing their visibility for the X rays by the addition of more radiopaque agents. All these changes affect the properties of the cement and its toxicity. This is why researchers at the Department of Polymer Science and Technology at the UPV/EHU are seeking to develop new formulae for acrylic bone cements designed specifically for injectable use and which provide what could possibly be an additional therapeutic action.

The UPV/EHU researchers have seen that it is possible to obtain injectable bone cements with rheological properties and with suitable selection of PMMA pearl particle size. Given that the greater the size of the pearls, in some way the heat produced during polymerisation is dissipated more and not so much exothermia is produced in the polymerisation reaction, thus producing a greater heating of the tissue.

Once the PMMA pearl particle size is selected, certain radiopaque and/or therapeutic agents are incorporated that can intervene in the process of curing and quantify the effects produced in the properties of the cement. On the one hand, bismuth salicylate has been added, combining the analgesic effects of salycilic acid with that of the bismuth, a metal easily visible using X rays. Thus, the results reflect a suitable radiopacity provided by the bismuth, a therapeutic effect of the salycilate and less toxicity and good compatibility overall.

Also, acrylic cements are formulated by adding bioactive elements, the idea being to obtain the interaction between the cement and the biological tissue, in some way causing the fixing of the tissue (osteoregeneration). In fact, strontium hydroxiapatite has been incorporated in order to combine the visibility of strontium and the immediate fixing of acrylic cement with the long-term fixing of the bioactive ingredient.

Finally, thanks to collaboration with other research centres, the EHU-UPV researchers carried out in vitro and in vivo biocompatibility studies. The studies undertaken to date have not given any more problems than cements with traditional commercial formulae.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1619&hizk=I

Further reports about: Agent PMMA acrylic effect rays

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>