Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New cements for vertebral lesions

08.02.2008
A number of researchers at the Department of Polymer Science and Technology at the Chemistry Faculty from San Sebastian at the University of the Basque Country, led by Ms Isabel Goñi and Ms Marilo Gurrutxaga, are studying new formulae for acrylic copolymers and compounds in order to obtain efficacious, multiuse bone cements with reduced side effects.

Acrylic bone cements based on polymethylmetacrylate (PMMA) have been traditionally used in hip replacements in order to set the prothesis inside the bone. On the other hand, with new techniques such as vertebroplastia, the cement is injected into an affected vertebra by means of long and narrow needles, visualized with X rays.

Vertebroplastia is mainly applied in the treatment of vertebral fractures due to osteoporosis or bone tumours, with the aim of reinforcing the bone and alleviating the pain. It is a minimally invasive and rapid technique (~ 40 min/vertebra) and efficacious in alleviating pain (80-90% in 72 h) due to the mechanical reinforcement provided by the cement. Nevertheless, the risk of migration of the cement and of bone necrosis has to be taken into account given the exothermia of the polymerisation reaction and the toxicity of the monomer. Researchers at the Department of Polymer Science and Technology at the University of the Basque Country (UPV/EHU) focused on this, amongst other items, in this study.

Viscosity and radiopacity

... more about:
»Agent »PMMA »acrylic »effect »rays

The formulae used for the cement in vertebroplasty consist basically of the monomer, PMMA pearls and a radiopaque agent. This last ingredient is what enables the visualisation of the cement mass during the injection. These formulae have to comply principally with the following requisites: appropriate viscosity and high radiopacity. The cement has to have a certain consistency so as not to drip, and sufficient fluidity to be injected, as well as being highly visual with X rays, so that the surgeon can see what is being injected.

In order to adapt the traditional formulae to new applications, surgeons usually modify the cements when operating, in order to facilitate their injection, either adding more monomer in liquid phase to reduce viscosity and increase the time for working or, otherwise, increasing their visibility for the X rays by the addition of more radiopaque agents. All these changes affect the properties of the cement and its toxicity. This is why researchers at the Department of Polymer Science and Technology at the UPV/EHU are seeking to develop new formulae for acrylic bone cements designed specifically for injectable use and which provide what could possibly be an additional therapeutic action.

The UPV/EHU researchers have seen that it is possible to obtain injectable bone cements with rheological properties and with suitable selection of PMMA pearl particle size. Given that the greater the size of the pearls, in some way the heat produced during polymerisation is dissipated more and not so much exothermia is produced in the polymerisation reaction, thus producing a greater heating of the tissue.

Once the PMMA pearl particle size is selected, certain radiopaque and/or therapeutic agents are incorporated that can intervene in the process of curing and quantify the effects produced in the properties of the cement. On the one hand, bismuth salicylate has been added, combining the analgesic effects of salycilic acid with that of the bismuth, a metal easily visible using X rays. Thus, the results reflect a suitable radiopacity provided by the bismuth, a therapeutic effect of the salycilate and less toxicity and good compatibility overall.

Also, acrylic cements are formulated by adding bioactive elements, the idea being to obtain the interaction between the cement and the biological tissue, in some way causing the fixing of the tissue (osteoregeneration). In fact, strontium hydroxiapatite has been incorporated in order to combine the visibility of strontium and the immediate fixing of acrylic cement with the long-term fixing of the bioactive ingredient.

Finally, thanks to collaboration with other research centres, the EHU-UPV researchers carried out in vitro and in vivo biocompatibility studies. The studies undertaken to date have not given any more problems than cements with traditional commercial formulae.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1619&hizk=I

Further reports about: Agent PMMA acrylic effect rays

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>