Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene plays 'Jekyll and Hyde' in brain cancer

07.02.2008
Perhaps the only positive spin one can put on the brain cancer glioblastoma is that it’s relatively uncommon. Other than that, the news is bad. It is nearly always fatal, it tends to strike people in the prime of their lives, and the limited treatment options have changed little over decades. It’s no wonder then that many researchers are determined to find new ways treat this poorly understood type of cancer.

One approach focuses on a gene called STAT3. In several tumors, STAT3 takes the role of an oncogene, that is, a gene whose normal functions are derailed and, as a result, becomes a driving force in a tumor’s development. Clearly then, blocking STAT3 would deal a major blow to such tumors.

But a new study led by a team at Harvard Medical School has found that STAT3 isn’t always the villain. While it does behave as an oncogene in certain types of glioblastoma, in others it becomes what’s called a “tumor suppressor gene,” a type of gene often responsible for keeping the renegade cancer cells in check.

In other words, the same gene in the same cancer can play a completely different role from one person to the next, depending on genetic nuances between individuals. The results appear online February 6 in Genes and Development.

“This discovery lays the foundation for a more tailored therapeutic intervention,” says Azad Bonni, an associate professor of pathology at Harvard Medical School, and senior author on this study. “And that’s really important. You can’t just go blindly treating people by inhibiting STAT3.”

When most people think of brain cells, they think of neurons, those cells whose electric signaling gives rise to our consciousness. But another class of brain cells called astrocytes (named after their uncanny resemblance to stars) actually outnumber neurons ten to one. Despite their name, astrocytes play a less glitzy role than neurons do. Typically, they’re support cells, involved with functions such as providing nutrients to nerve tissue and repairing scars. However, nearly all brain cancers occur in astrocytes, or in the neural stem cells that generate astrocytes.

Bonni, a neurologist and neuroscientist by training, decided to investigate the genetic etiology of glioblastoma by studying whether certain regulatory genes that control the generation of astrocytes during normal development also play a role in these tumors. The logic here is simple: since disease is often the breakdown of a normal biological process, the more we understand how cells get it right, the more we understand what can go wrong. And since STAT3 is a key gene that turns neural stem cells into astrocytes during normal development, what is its role in glioblastoma"

Bonni and two lead authors, Núria de la Iglesia and Genevieve Konopka, in collaboration with investigators in the laboratory of Ronald DePinho at the Dana-Farber Cancer Institute, began by genetically manipulating mouse astrocytes, then placing them into a second group of mice whose immune systems had been compromised. The findings surprised them.

Taking advantage of previously published data, the researchers looked closely at how two genes, EGFR and PTEN—whose mutated forms are associated with glioblastoma—affect the function of STAT3 in astrocytes. Bonni’s group found when EGFR is mutated, STAT3 is an oncogene; with a PTEN mutation, STAT3 is a tumor suppressor.

“EGFR, in its normal state, is a transmembrane receptor, usually performing its functions at the cell surface,” says Bonni. “However, when it’s mutated, we find it in the cell’s nucleus interacting with STAT3—and turning it into an oncogene. STAT3 itself is not mutated or damaged. It’s the process of regulating STAT3 that gets damaged.”

With PTEN, it’s a completely different story. PTEN is itself a tumor suppressor gene. When PTEN becomes disabled in astrocytes, these potential tumors still have STAT3 standing in their way. This is because STAT3 acts as a tumor suppressor normally in astrocytes. However, as more PTEN becomes disabled, a cascade of molecular events is set in motion with the express purpose of inhibiting STAT3 function and thus turning the tide in the cells toward tumor formation.

The researchers confirmed these findings in human glioblastoma tumors as well.

“The belief that STAT3 can only be an oncogene has been a pretty entrenched dogma in the field,” says Bonni, “so we performed many, many experiments to make sure this was correct. It took some very persistent investigators in my lab to get the job done. As a result, we’re convinced of our data.”

While glioblastoma tends to be uncommon, STAT3 has also been implicated in prostate and breast cancers, so these results may translate to other types of tumors as well.

In addition, the findings contribute to the growing body of evidence for “personalized medicine,” showing that many types of cancers contain subgroups that require different treatments.

David Cameron | EurekAlert!
Further information:
http://www.hms.harvard.edu

Further reports about: Brain Glioblastoma PTEN Stat3 astrocytes mutated oncogene suppressor

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>