Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transparent fish to make human biology clearer

07.02.2008
Researchers can watch cancer spread and bone marrow engraft

Zebrafish are genetically similar to humans and are good models for human biology and disease. Now, researchers at Children's Hospital Boston have created a zebrafish that is transparent throughout its life. The new fish allows scientists to directly view its internal organs, and observe processes like tumor metastasis and blood production after bone-marrow transplant in a living organism.


Caption: The transparent zebrafish.
Credit: Richard Whtie, MD, PhD

The fish, described in the February 7 issue of Cell Stem Cell, was created by Richard White, MD, PhD, a clinical fellow in the Stem Cell Program at Children's, with others in the laboratory of Leonard Zon, PhD.

The classic method for studying human diseases in animals is to allow the animal to get the disease, kill and dissect the animal, then ask, "what happened?" But in cancer and other fast-changing processes that traverse the body, this method is bound to miss something. "It's like taking a photograph when you need a video," says White, also an instructor of medicine at the Dana-Farber Cancer Institute.

Zebrafish embryos have enabled researchers to study disease in live organisms, since they are transparent. But zebrafish adults are opaque. "Everything after four weeks has been invisible to us," says White.

White's first experiment on the zebrafish examined how a cancer spreads. "The process by which a tumor goes from being localized to widespread and ultimately fatal is the most vexing problem that oncologists face," says White. "We don't know why cancer cells decide to move away from their primary site to other parts in the body."

White created a fluorescent melanoma tumor in the transparent fish's abdominal cavity. Viewing the fish under a microscope, White saw the cancer cells begin to spread within five days. He even saw individual cells metastasize, something that has not been observed, so readily and in real-time, in a living organism.

The spreading melanoma cells appeared to "home" to the skin after leaving the abdominal cavity. "This told us that when tumor cells spread to other parts in the body, they don't do it randomly," says White. "They know where to go."

White plans to study tumor cell homing, then look for ways to modify the tumor cells or cells of the host so that the spreading cells never find their new location.

The fish may also answer questions about stem cell transplants. While transplants of blood-forming stem cells help cancer patients rebuild healthy blood, some transplants don't "take," for reasons that are unknown. Scientists have lacked a full understanding what steps blood stem cells must take to do their job, says White.

White showed the process is observable in the fish. He first irradiated a transparent fish's bone marrow, then transplanted fluorescent blood-forming stem cells from another zebrafish. By four weeks, the fluorescent stem cells had visibly migrated and grown in the fish's bone marrow, which is in the kidney. Even individual stem cells were visible, something researchers haven't easily observed in a living organism, White says.

By studying how the stem cells embed and build blood in the fish, scientists can look for ways to help patients rebuild their blood faster. Drugs and genes could be tested in the living fish, with direct observation of results, White says.

White created the transparent fish simply by mating two existing zebrafish breeds. Zebrafish have three pigments in their skin—reflective, black, and yellow. White mated a breed that lacks reflective pigment, called "roy orbison," with one that lacks black pigment, called "nacre." The offspring had only yellow pigment in their skin, essentially looking clear. White named the new breed "casper."

The fish's brain, heart, and digestive tract are also visible, allowing researchers to study genetic defects of these organs from early embryonic development through adulthood. White hopes this tool will provide insight into how mutated genes cause diseases ranging from Alzheimer's disease to inflammatory bowel disease.

"What happens in a living organism is different than what happens in a dish," White says.

Elizabeth Andrews | EurekAlert!
Further information:
http://www.childrenshospital.org/newsroom

Further reports about: Pigment Stem Transparent White organism spread stem cells transplant

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>