Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transparent fish to make human biology clearer

07.02.2008
Researchers can watch cancer spread and bone marrow engraft

Zebrafish are genetically similar to humans and are good models for human biology and disease. Now, researchers at Children's Hospital Boston have created a zebrafish that is transparent throughout its life. The new fish allows scientists to directly view its internal organs, and observe processes like tumor metastasis and blood production after bone-marrow transplant in a living organism.


Caption: The transparent zebrafish.
Credit: Richard Whtie, MD, PhD

The fish, described in the February 7 issue of Cell Stem Cell, was created by Richard White, MD, PhD, a clinical fellow in the Stem Cell Program at Children's, with others in the laboratory of Leonard Zon, PhD.

The classic method for studying human diseases in animals is to allow the animal to get the disease, kill and dissect the animal, then ask, "what happened?" But in cancer and other fast-changing processes that traverse the body, this method is bound to miss something. "It's like taking a photograph when you need a video," says White, also an instructor of medicine at the Dana-Farber Cancer Institute.

Zebrafish embryos have enabled researchers to study disease in live organisms, since they are transparent. But zebrafish adults are opaque. "Everything after four weeks has been invisible to us," says White.

White's first experiment on the zebrafish examined how a cancer spreads. "The process by which a tumor goes from being localized to widespread and ultimately fatal is the most vexing problem that oncologists face," says White. "We don't know why cancer cells decide to move away from their primary site to other parts in the body."

White created a fluorescent melanoma tumor in the transparent fish's abdominal cavity. Viewing the fish under a microscope, White saw the cancer cells begin to spread within five days. He even saw individual cells metastasize, something that has not been observed, so readily and in real-time, in a living organism.

The spreading melanoma cells appeared to "home" to the skin after leaving the abdominal cavity. "This told us that when tumor cells spread to other parts in the body, they don't do it randomly," says White. "They know where to go."

White plans to study tumor cell homing, then look for ways to modify the tumor cells or cells of the host so that the spreading cells never find their new location.

The fish may also answer questions about stem cell transplants. While transplants of blood-forming stem cells help cancer patients rebuild healthy blood, some transplants don't "take," for reasons that are unknown. Scientists have lacked a full understanding what steps blood stem cells must take to do their job, says White.

White showed the process is observable in the fish. He first irradiated a transparent fish's bone marrow, then transplanted fluorescent blood-forming stem cells from another zebrafish. By four weeks, the fluorescent stem cells had visibly migrated and grown in the fish's bone marrow, which is in the kidney. Even individual stem cells were visible, something researchers haven't easily observed in a living organism, White says.

By studying how the stem cells embed and build blood in the fish, scientists can look for ways to help patients rebuild their blood faster. Drugs and genes could be tested in the living fish, with direct observation of results, White says.

White created the transparent fish simply by mating two existing zebrafish breeds. Zebrafish have three pigments in their skin—reflective, black, and yellow. White mated a breed that lacks reflective pigment, called "roy orbison," with one that lacks black pigment, called "nacre." The offspring had only yellow pigment in their skin, essentially looking clear. White named the new breed "casper."

The fish's brain, heart, and digestive tract are also visible, allowing researchers to study genetic defects of these organs from early embryonic development through adulthood. White hopes this tool will provide insight into how mutated genes cause diseases ranging from Alzheimer's disease to inflammatory bowel disease.

"What happens in a living organism is different than what happens in a dish," White says.

Elizabeth Andrews | EurekAlert!
Further information:
http://www.childrenshospital.org/newsroom

Further reports about: Pigment Stem Transparent White organism spread stem cells transplant

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>