Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Transparent fish to make human biology clearer

Researchers can watch cancer spread and bone marrow engraft

Zebrafish are genetically similar to humans and are good models for human biology and disease. Now, researchers at Children's Hospital Boston have created a zebrafish that is transparent throughout its life. The new fish allows scientists to directly view its internal organs, and observe processes like tumor metastasis and blood production after bone-marrow transplant in a living organism.

Caption: The transparent zebrafish.
Credit: Richard Whtie, MD, PhD

The fish, described in the February 7 issue of Cell Stem Cell, was created by Richard White, MD, PhD, a clinical fellow in the Stem Cell Program at Children's, with others in the laboratory of Leonard Zon, PhD.

The classic method for studying human diseases in animals is to allow the animal to get the disease, kill and dissect the animal, then ask, "what happened?" But in cancer and other fast-changing processes that traverse the body, this method is bound to miss something. "It's like taking a photograph when you need a video," says White, also an instructor of medicine at the Dana-Farber Cancer Institute.

Zebrafish embryos have enabled researchers to study disease in live organisms, since they are transparent. But zebrafish adults are opaque. "Everything after four weeks has been invisible to us," says White.

White's first experiment on the zebrafish examined how a cancer spreads. "The process by which a tumor goes from being localized to widespread and ultimately fatal is the most vexing problem that oncologists face," says White. "We don't know why cancer cells decide to move away from their primary site to other parts in the body."

White created a fluorescent melanoma tumor in the transparent fish's abdominal cavity. Viewing the fish under a microscope, White saw the cancer cells begin to spread within five days. He even saw individual cells metastasize, something that has not been observed, so readily and in real-time, in a living organism.

The spreading melanoma cells appeared to "home" to the skin after leaving the abdominal cavity. "This told us that when tumor cells spread to other parts in the body, they don't do it randomly," says White. "They know where to go."

White plans to study tumor cell homing, then look for ways to modify the tumor cells or cells of the host so that the spreading cells never find their new location.

The fish may also answer questions about stem cell transplants. While transplants of blood-forming stem cells help cancer patients rebuild healthy blood, some transplants don't "take," for reasons that are unknown. Scientists have lacked a full understanding what steps blood stem cells must take to do their job, says White.

White showed the process is observable in the fish. He first irradiated a transparent fish's bone marrow, then transplanted fluorescent blood-forming stem cells from another zebrafish. By four weeks, the fluorescent stem cells had visibly migrated and grown in the fish's bone marrow, which is in the kidney. Even individual stem cells were visible, something researchers haven't easily observed in a living organism, White says.

By studying how the stem cells embed and build blood in the fish, scientists can look for ways to help patients rebuild their blood faster. Drugs and genes could be tested in the living fish, with direct observation of results, White says.

White created the transparent fish simply by mating two existing zebrafish breeds. Zebrafish have three pigments in their skin—reflective, black, and yellow. White mated a breed that lacks reflective pigment, called "roy orbison," with one that lacks black pigment, called "nacre." The offspring had only yellow pigment in their skin, essentially looking clear. White named the new breed "casper."

The fish's brain, heart, and digestive tract are also visible, allowing researchers to study genetic defects of these organs from early embryonic development through adulthood. White hopes this tool will provide insight into how mutated genes cause diseases ranging from Alzheimer's disease to inflammatory bowel disease.

"What happens in a living organism is different than what happens in a dish," White says.

Elizabeth Andrews | EurekAlert!
Further information:

Further reports about: Pigment Stem Transparent White organism spread stem cells transplant

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>