Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RNA-associated introns guide nerve-cell channel production

07.02.2008
Implications for studying learning, memory, and neurological diseases

Researchers at the University of Pennsylvania School of Medicine have discovered that introns, or junk DNA to some, associated with RNA are an important molecular guide to making nerve-cell electrical channels. Senior author James Eberwine, PhD, Elmer Bobst Professor of Pharmacology, and lead authors Kevin Miyashiro, and Thomas J. Bell, PhD, both in Eberwine’s lab, report their findings in this week's early online edition of the Proceedings of the National Academy of Sciences.

In nerve cells, some ion channels are located in the dendrite, which branch from the cell body of the neuron. Dendrites detect the electrical and chemical signals transmitted to the neuron by the axons of other neurons. Abnormalities in the dendrite electrical channel are involved in epilepsy, neurodegenerative diseases, and cognitive disorders, among others.

Introns are commonly looked on as sequences of "junk" DNA found in the middle of gene sequences, which after being made in RNA are simply excised in the nucleus before the messenger RNA is transported to the cytoplasm and translated into a protein. In 2005, the Penn group first found that dendrites have the capacity to splice messenger RNA, a process once believed to only take place in the nucleus of cells.

... more about:
»Channel »Electrical »Guide »Intron »Neuron »RNA »dendrite »nerve-cell

Now, in the current study, the group has found that an RNA encoding for a nerve-cell electrical channel, called the BK channel, contains an intron that is present outside the nucleus. This intron plays an important role in ensuring that functional BK channels are made in the appropriate place in the cell.

When this intron-containing RNA was knocked out, leaving the maturely spliced RNA in the cell, the electrical properties of the cell became abnormal. “We think the intron-containing mRNA is targeted to the dendrite where it is spliced into the channel protein and inserted locally into the region of the dendrite called the dendritic spine. The dendritic spine is where a majority of axons from other cells touch a particular neuron to facilitate neuronal communication” says Eberwine. “This is the first evidence that an intron-containing RNA outside of the nucleus serves a critical cellular function.”

“The intron acts like a guide or gatekeeper,” says Eberwine. “It keys the messenger RNA to the dendrite for local control of gene expression and final removal of the intron before the channel protein is made. Just because the intron is not in the final channel protein doesn’t mean that it doesn’t have an important purpose.”

The group surmises that the intron may control how many mRNAs are brought to the dendrite and translated into functional channel proteins. The correct number of channels is just as important for electrical impulses as having a properly formed channel.

The investigators believe that this is a general mechanism for the regulation of cytoplasmic RNAs in neurons. Given the central role of dendrites in various physiological functions they hope to relate this new knowledge to understanding the molecular underpinnings of memory and learning, as well as components of cognitive dysfunction resulting from neurological disease.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

Further reports about: Channel Electrical Guide Intron Neuron RNA dendrite nerve-cell

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>