Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT applies engineering approach to studying biological pathways

07.02.2008
An MIT team has used an engineering approach to show that complex biological systems can be studied with simple models developed by measuring what goes into and out of the system.

Such an approach can give researchers an alternative way to look at the inner workings of a complicated biological system-such as a pathway in a cell-and allow them to study systems in their natural state.

The MIT researchers focused on a pathway in yeast that controls cells' response to a specific change in the environment. The resulting model is "the simplest model you can ever reduce these systems to," said Alexander van Oudenaarden, W.M. Keck Career Development Professor in Biomedical Engineering and Associate Professor of Physics and senior author of a paper describing the work in the Jan. 25 issue of Science.

Quantitative modeling of a biological pathway normally involves intense computer simulations to crunch all available data on the dozens of relevant reactions in the pathway, producing a detailed interaction map.

... more about:
»Hog1 »SALT »glycerol »inputs »reactions »yeast

"These simulations are difficult to perform and interpret because many model parameters are not or cannot be experimentally measured. Moreover, because there are so many interconnected components in the network, it is difficult to make reliable predictions," said van Oudenaarden.

Alternatively, a complex system can be treated as a "black box," where you don't know what's happening inside but can figure it out by analyzing the system's response to periodic inputs. This approach is widely used in the engineering disciplines but has rarely been applied to analyze biological pathways. The technique is very general and could be used to study any cellular pathway with measurable inputs and outputs, van Oudenaarden said.

"You don't want to open the box, but you want to shake it a little," he said. "Comparing the response when you shake it fast to when you shake it slowly reveals important information about which chemical reactions in the pathway dominate the response."

In the new study, the "black box" is a pathway involving at least 50 reactions. The pathway is activated when yeast cells are exposed to a change in the osmotic pressure of their environment, for example, when salt is added to their growth media.

The researchers controlled the inputs (bursts of salt) and measured output (activity of Hog1 kinase, an enzyme with a pivotal role in the yeast salt-stress response).

They exposed the cells to salt bursts of varying frequency, then compared those inputs with the resulting Hog1 activity.

Using that data and standard methods from systems engineering, they came up with two differential equations that describe the three major feedback loops in the pathway: one that takes action almost immediately and is independent of the kinase Hog1, and two feedbacks (one fast and one slow) that are controlled by Hog1.

The fast feedbacks prevent the yeast cell from shriveling up as water rushes out of the cell into the saltier environment. That is accomplished by increasing the cellular concentration of glycerol, a byproduct of many cell reactions. The presence of glycerol inside the cell balances the extra salt outside the cell so water is no longer under osmotic pressure to leave the cell.

In the short term, glycerol concentration is immediately increased by blocking the steady stream of glycerol that normally exits the cell. In the long-term feedback loop, Hog1 goes to the nucleus and activates a pathway that induces transcription of genes that produce enzymes that synthesize more glycerol. This process takes at least 15 minutes.

During the salt shocks, the short-term response kicks in right away, but the cells also initiate the longer-term responses.

Other authors of the paper are Jerome Mettetal, a recent MIT PhD recipient; Dale Muzzey, a graduate student in biophysics at Harvard; and Carlos Gomez-Uribe, a graduate student in the Harvard-MIT Division of Health Sciences and Technology.

The research was funded by the National Science Foundation and the National Institutes of Health.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

Further reports about: Hog1 SALT glycerol inputs reactions yeast

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>