Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify a worldwide-distributed clone of bacteria responsible for Legionnaire's disease

06.02.2008
A study published online today in Genome Research (www.genome.org) describes new insights into Legionella pneumophila, the bacteria responsible for most cases of Legionnaires’ disease.

This report investigates the genetic background of L. pneumophila, provides clues to the evolution and emergence of this pathogen, and describes the identification of a worldwide-distributed epidemic clone.

Legionnaire’s disease is characterized by severe pneumonia, afflicting the elderly and individuals with weakened immune responses in particular. While L. pneumophila, a genetically diverse species and one of many Legionella species, is common in natural and drinking water supplies, the majority of Legionnaire’s disease cases worldwide (approximately 84%) are caused by a single serogroup, L. pneumophila Sg1. Recent work has suggested that even though Sg1 is responsible for most clinical cases, this serogroup accounts for only about 30% of environmental Legionella.

As the prevalence of Sg1 in Legionnaire’s disease cases does not appear to be a result of environmental predominance, the frequent occurrence of Sg1 in disease is likely due to higher virulence. In this study, researchers led by Dr. Carmen Buchrieser of the Institut Pasteur conducted a comparative genomics analysis to gain insight into the basis for the higher virulence of Sg1. To compare Sg1 and other Legionella isolates, the researchers constructed DNA-arrays containing genes known to be variable in L. pneumophila strains, including a set of known and potential virulence genes. “We screened the gene content of 217 L. pneumophila strains and 32 other Legionella (non-pneumophila) strains that were isolated from humans and the environment,” describes Buchrieser. “We discovered core virulence- and eukaryotic-like genes are highly conserved, indicating strong selection pressures for their preservation.”

Importantly, a cluster of lipopolysaccharide (LPS) biosynthesis genes was found to be common in Sg1, even in different genetic backgrounds. This suggests that the gene cluster could be transferred horizontally between strains. “The LPS of Sg1 itself may confer to Sg1 strains the high prevalence in human disease,” explains Buchrieser. Variation in LPS, a component of the cell wall normally recognized by the innate immune system, could allow the bacteria to evade host immune responses.

Most significantly, this study identified a specific clone of Sg1 that is present in both sporadic cases and outbreaks worldwide. “The identification of this clone opens exciting possibilities of research to find out which genes contribute to improved interaction with the host, or to improved fitness in the environment, or to both,” describes Buchrieser.

Buchrieser cautions that there may be other genetic factors involved in the emergence of an epidemic strain. “Although the strains carrying this LPS cluster seem to be particularly adapted for causing human disease, additional genetic factors present in the genome may have allowed a particular clone of Sg1 to evolve within this highly diverse species.”

In addition to gaining insight into the genetic basis for L. pneumophila Sg1 virulence, Buchrieser suggests this work may lead to new methods of detection. “The findings of this comparative genomics approach will be invaluable for the development of novel tools to rapidly detect Legionella-associated risk factors in water distribution systems of hospitals and other potential sites for Legionella infection.”

Peggy Calicchia | EurekAlert!
Further information:
http://www.cshl.edu

Further reports about: Buchrieser Clone LPS Legionella Sg1 bacteria pneumophila strain virulence

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>