Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify a worldwide-distributed clone of bacteria responsible for Legionnaire's disease

06.02.2008
A study published online today in Genome Research (www.genome.org) describes new insights into Legionella pneumophila, the bacteria responsible for most cases of Legionnaires’ disease.

This report investigates the genetic background of L. pneumophila, provides clues to the evolution and emergence of this pathogen, and describes the identification of a worldwide-distributed epidemic clone.

Legionnaire’s disease is characterized by severe pneumonia, afflicting the elderly and individuals with weakened immune responses in particular. While L. pneumophila, a genetically diverse species and one of many Legionella species, is common in natural and drinking water supplies, the majority of Legionnaire’s disease cases worldwide (approximately 84%) are caused by a single serogroup, L. pneumophila Sg1. Recent work has suggested that even though Sg1 is responsible for most clinical cases, this serogroup accounts for only about 30% of environmental Legionella.

As the prevalence of Sg1 in Legionnaire’s disease cases does not appear to be a result of environmental predominance, the frequent occurrence of Sg1 in disease is likely due to higher virulence. In this study, researchers led by Dr. Carmen Buchrieser of the Institut Pasteur conducted a comparative genomics analysis to gain insight into the basis for the higher virulence of Sg1. To compare Sg1 and other Legionella isolates, the researchers constructed DNA-arrays containing genes known to be variable in L. pneumophila strains, including a set of known and potential virulence genes. “We screened the gene content of 217 L. pneumophila strains and 32 other Legionella (non-pneumophila) strains that were isolated from humans and the environment,” describes Buchrieser. “We discovered core virulence- and eukaryotic-like genes are highly conserved, indicating strong selection pressures for their preservation.”

Importantly, a cluster of lipopolysaccharide (LPS) biosynthesis genes was found to be common in Sg1, even in different genetic backgrounds. This suggests that the gene cluster could be transferred horizontally between strains. “The LPS of Sg1 itself may confer to Sg1 strains the high prevalence in human disease,” explains Buchrieser. Variation in LPS, a component of the cell wall normally recognized by the innate immune system, could allow the bacteria to evade host immune responses.

Most significantly, this study identified a specific clone of Sg1 that is present in both sporadic cases and outbreaks worldwide. “The identification of this clone opens exciting possibilities of research to find out which genes contribute to improved interaction with the host, or to improved fitness in the environment, or to both,” describes Buchrieser.

Buchrieser cautions that there may be other genetic factors involved in the emergence of an epidemic strain. “Although the strains carrying this LPS cluster seem to be particularly adapted for causing human disease, additional genetic factors present in the genome may have allowed a particular clone of Sg1 to evolve within this highly diverse species.”

In addition to gaining insight into the genetic basis for L. pneumophila Sg1 virulence, Buchrieser suggests this work may lead to new methods of detection. “The findings of this comparative genomics approach will be invaluable for the development of novel tools to rapidly detect Legionella-associated risk factors in water distribution systems of hospitals and other potential sites for Legionella infection.”

Peggy Calicchia | EurekAlert!
Further information:
http://www.cshl.edu

Further reports about: Buchrieser Clone LPS Legionella Sg1 bacteria pneumophila strain virulence

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>