Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vet medicine researcher examines link between cancer, Down syndrome

06.02.2008
There’s new hope for breast cancer research, and it’s coming from a very unlikely place. Researchers at the Texas A&M University College of Veterinary Medicine & Biomedical Sciences recently published articles in the journals Molecular and Cellular Biology and Carcinogenesis indicating that a protein long suspected to play a role in Down Syndrome may also contribute to treating this devastating disease.

It has long been known that Down Syndrome is caused when an individual has an extra copy of the 21st chromosome, giving them a total of three instead of the normal chromosome pair. With improved medical care, people with Down Syndrome are now living longer, healthier lives. With this advance came the observation that individuals with Down Syndrome have a significant decrease in risk for several types of tumors. Most striking is the observation that women with Down Syndrome are 10-25 times less likely to develop breast cancer.

This effect is thought to be due to the presence of one or more “tumor suppressor” genes on chromosome 21. However, the identity of such genes has not been known, until now.

“Years of research into the genetics of Down Syndrome have helped us to discover a very important gene on chromosome 21,” said Dr. Weston Porter, associate professor in the Veterinary Integrative Biosciences Department. “This gene, called Single-minded 2 or SIM2 is thought to play an important role in Down Syndrome by regulating neuron growth in the developing brain. Based on its developmental role, we hypothesized that SIM2 may also be involved in breast cancer, which is essentially a disease of uncontrolled growth.”

... more about:
»Chromosome »Down Syndrome »SIM2 »Syndrome

For the last five years, Porter and his colleagues, Richard Metz, Brian Laffin and Elizabeth Wellberg, have been using human breast cells and mouse models as part of a research grant from the National Institutes of Health to validate this hypothesis, and what they have found they consider very promising. SIM2 is lost or suppressed in a majority of human breast tumors, and deletion of the SIM2 gene triggers rapid tumor growth in mice.

However, the process by which SIM2 suppresses breast cancer is complex and not fully understood. This same protein which may hold so much promise for breast cancer treatment is also thought to contribute to the negative effects of Down Syndrome.

“As we move forward,” said Porter, “it will be important for us to understand the circuit of SIM2 and how it is turned on and off. In light of the available data on breast cancer incidence in the Down Syndrome population and our experimental data, knowing how to turn SIM2 expression on and off and identification of down-stream targets should have great therapeutic value.”

While still in the early stages, this research represents a promising weapon in the fight against breast cancer as it sheds light on a previously unknown target for which to shoot.

“What we are seeing now is a paradigm shift in breast cancer research” said Porter. “For years we have gone after the wrong kinds of cells. It was all about getting rid of the tumor itself. This has led to a dandelion effect where, we didn’t get to the root and the cancers kept coming back and spreading. Now we’re looking at ways to get to the root of breast cancer, and not simply shrinking the tumor to come back another day.”

While it may be years before their research results in a definitive treatment or cure, Weston says it is impacting our approach towards understanding breast cancer today.

Keith Randall | EurekAlert!
Further information:
http://www.tamu.edu

Further reports about: Chromosome Down Syndrome SIM2 Syndrome

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>