Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bonn Scientists Simulate Dinosaur Digestion in the Lab

06.02.2008
Scientists from the University of Bonn are researching which plants giant dinosaurs could have lived off more than 100 million years ago. They want to find out how the dinosaurs were able to become as large as they did. In actual fact such gigantic animals should not have existed. The results of the research have now been published in the journal 'Proceedings of the Royal Society B'.

Take 200 milligrammes of dried and ground equisetum, ten millilitres of digestive juice from sheep's rumen, a few minerals, carbonate and water. Fill a big glass syringe with the mix, clamp this into a revolving drum and put the whole thing into an incubator, where the brew can rotate slowly. In this way you obtain the artificial 'dinosaur rumen'.

With this apparatus (also used as a ‘Menke gas production technique’ in assessing food for cows) Dr. Jürgen Hummel from the Bonn Institute of Animal Sciences (Bonner Institut für Tierwissenschaften) is investigating which plants giant dinosaurs could have lived off more than 100 million years ago, since this is one of the pieces which are still missing in the puzzle involving the largest land animals that ever walked the earth. The largest of these 'sauropod dinosaurs' with their 70 to 100 tonnes had a mass of ten full grown elephants or more than 1000 average Germans.

Larger than permitted

... more about:
»Ground »bacteria »equisetum »syringe

How the dinosaurs could ever attain this size is something which scientists from Germany and Switzerland are investigating. The Bonn palaeontologist, Professor Martin Sander, the coordinator of the research group 'Biology of the Sauropod Dinosaurs: The Evolution of Gigantism', says, 'There is a law to which most animals living today conform. The larger an animal, the smaller the density of the population, i.e. the fewer animals of the same species there are per square kilometre.' The larger an animal is, the larger the amount of food it has to have in order to survive. Therefore a specific area can only feed a certain maximum number of animals.

At the same time there is a lower limit to the density of population. If this is undercut, the species dies out: 'In this case diseases can rapidly wipe out the whole stock. Moreover, finding a mate becomes difficult,' Martin Sander explains. An animal like the 100-tonne argentinosaurus should have normally not had this 'minimum population density’, actually it should not have been able to exist. But there are hypotheses for this apparent paradox: for example the giant dinosaurs presumably had a metabolism that was lower than that of mammals. In this context it is unclear how nutritious the plants were that formed their diet.

This question is being investigated by Dr. Jürgen Hummel in conjunction with Dr. Marcus Clauss from the University of Zurich. 'We assume that the herbivorous dinosaurs must have had a kind of fermenter, similar to the rumen in cows today.' Almost all existing herbivores digest their food by using bacteria in this way. The panda is the exception. Because the panda is not like this its digestion is inefficient. It stuffs bamboo leaves into its mouth all day long, in order to meet its energy needs, despite the fact that it does not move about much, thereby saving energy.

Jürgen Hummel transforms glass syringes into simple fermenters, which he fills with bacteria from the sheep's rumen. 'These micro-organisms are very old from an evolutionary point of view; we can therefore assume that they also existed in the past,' he explains. To the mix of bacteria he adds dried and ground food plants: grass, foliage or herbs which still form part of animals’ diet, and for comparison equisetum, Norfolk Island pine or ginkgo leaves, i.e. parts of plants which have been growing for more than 200 million years on earth. The gas formed during the fermentation process presses the plunger out of the syringes. Jürgen Hummel can therefore read the success of the fermentation process directly off their scales. This is measured according to a simple rule: the more gas is produced, the 'higher the quality' of the food.

Equisetum is bad for the teeth

These ‘old’ plants stand their ground surprisingly well compared to today's flora. 'The difference is not as great as might be expected,' Jürgen Hummel emphasises. The bacteria digest ginkgo even better than foliage, but they seem to prefer equisetum most. With it gas production is even higher than with some grasses. Nevertheless, equisetum figures in the diet of comparatively few animals. The reason is that in addition to the toxins present in many modern species it wears down animals’ teeth too much. 'Equisetum contains a lot of silicates,' Jürgen Hummel says. 'It acts like sand paper.'

However, many dinosaurs did not have any molars at all. They just pulled up their food and gulped it down. The mechanical break-up may have been carried out by a ‘gastric mill’. Similar to today's birds, dinosaurs may have swallowed stones with which they ground the food to a paste with their muscular stomach. However, there are no clear indications of this. Only recently the Bonn palaeontologist Dr. Oliver Wings doubted that dinosaurs had bezoar stones, at least this assumption could not be verified from fossil findings.

Dr. Jürgen Hummel | alfa
Further information:
http://www.itw.uni-bonn.de

Further reports about: Ground bacteria equisetum syringe

More articles from Life Sciences:

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

nachricht eTRANSAFE – collaborative research project aimed at improving safety in drug development process
26.09.2017 | Fraunhofer-Gesellschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

The material that obscures supermassive black holes

26.09.2017 | Physics and Astronomy

Ageless ears? Elderly barn owls do not become hard of hearing

26.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>