Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finely tuned laser strikes the right chord

31.05.2002


Pulses of laser light can make molecules react in ways that are impossible using classical test-tube chemistry. Molecules vibrate, and each molecule has its own “tone,” its own “melody.” It’s a question of finding the right key, and that is something that a “smart” laser beam can do. It can find its way to the right tone. In a new issue of the prestigious journal Nature it is shown how such a laser can be used to control photosynthesis molecules that gather light. This is the first time this feat has been done with such large and complicated molecules. Part of the work has been carried out at the Chemistry Center at Lund University in Sweden.



The experimental work has been performed at the Max Planck Institute for Quantum Optics in Garching, Germany, and researchers from the University of Glasgow and Vrije University in Holland have also been involved. The Lund scientist connected with the project is Dr. Jennifer L. Herek. Research has been under way for years in Lund seeking to understand how the process of photosynthesis, when plants transform sunlight and carbon dioxide into energy, works at the molecular level. One aim among others is to be able to utilize an artificial version of photosynthesis in the future production of energy.

“In our experiments we made use of a complex of antenna molecules, pigments that capture light and pass it on to a reaction center. Without all the knowledge gathered in Lund over the years about this complex, that feat would have been impossible. We could have used guesswork, but we would have had only one chance in a million to get it right,” says Jennifer Herek.


Today it’s possible to study extremely rapid chemical processes with the aid of lasers. At the Section for Chemical Physics, for example, scientists can start a chemical reaction with a laser pulse and then send a new pulse that will bounce back with information about what just happened. This technique has been elaborated by the German research team involved in the project, led by Dr. Marcus Motzkus. It is possible to send several pulses in an extremely short period of time. One pulse registers what is happening; another alters thecourse of the ongoing reaction.

When the laser gets feedback like this about what it has done, it can adapt its pulses to the result and try to find an optimal pulse, the pulse that can bring about the desired reaction in the molecule. In other words, the laser has become “smart.” It is connected to a computer program containing a so-called evolution algorithm. One pulse after another is generated. The “fittest” ones survive and become the “parent generation” of the next series of pulses. In other words, it’s like biological evolution. The color mix, amplitude, time, and a number of different parameters can be adjusted, and the final result can be a whole series of specifically tailored pulses in a certain order.

In order to show that it is possible to control reactions in complicated molecules, researchers must choose something that can be measured in quantifiable terms. Jennifer Herek explains:

“We have worked with an antenna complex in a purple bacterium that uses photosynthesis. Light is captured by carotenoid molecules and transferred to chlorophyll molecules. On the way, half of the energy is lost. For technical reasons, this time we chose to “hamper” nature rather than to “enhance” it. With the aid of lasers, we tried to obstruct this specific transfer more. It turned out to be 30% less effective. We were also able to show that all we influenced was these particular molecules, and nothing else. After having simplified the effective train of pulses, we could show that this was so by shifting the phase of the electric field of neighboring pulses in the train.”

“For a long time we have nurtured the dream that chemists have of being able to control a reaction without the constraints you have to put up with when you have two or more substances reacting with each other,” says Professor Villy Sundström at the Section for Chemical Physics. “With this new method we can learn even more about how photosynthesis works and ultimately be able to apply this knowledge in the creation of artificial photosynthesis.

Göran Frankel | alphagalileo
Further information:
http://www.mpq.mpg.de/lachem/reaction-dynamics/research/LH2/LH2project.html

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>