Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finely tuned laser strikes the right chord

31.05.2002


Pulses of laser light can make molecules react in ways that are impossible using classical test-tube chemistry. Molecules vibrate, and each molecule has its own “tone,” its own “melody.” It’s a question of finding the right key, and that is something that a “smart” laser beam can do. It can find its way to the right tone. In a new issue of the prestigious journal Nature it is shown how such a laser can be used to control photosynthesis molecules that gather light. This is the first time this feat has been done with such large and complicated molecules. Part of the work has been carried out at the Chemistry Center at Lund University in Sweden.



The experimental work has been performed at the Max Planck Institute for Quantum Optics in Garching, Germany, and researchers from the University of Glasgow and Vrije University in Holland have also been involved. The Lund scientist connected with the project is Dr. Jennifer L. Herek. Research has been under way for years in Lund seeking to understand how the process of photosynthesis, when plants transform sunlight and carbon dioxide into energy, works at the molecular level. One aim among others is to be able to utilize an artificial version of photosynthesis in the future production of energy.

“In our experiments we made use of a complex of antenna molecules, pigments that capture light and pass it on to a reaction center. Without all the knowledge gathered in Lund over the years about this complex, that feat would have been impossible. We could have used guesswork, but we would have had only one chance in a million to get it right,” says Jennifer Herek.


Today it’s possible to study extremely rapid chemical processes with the aid of lasers. At the Section for Chemical Physics, for example, scientists can start a chemical reaction with a laser pulse and then send a new pulse that will bounce back with information about what just happened. This technique has been elaborated by the German research team involved in the project, led by Dr. Marcus Motzkus. It is possible to send several pulses in an extremely short period of time. One pulse registers what is happening; another alters thecourse of the ongoing reaction.

When the laser gets feedback like this about what it has done, it can adapt its pulses to the result and try to find an optimal pulse, the pulse that can bring about the desired reaction in the molecule. In other words, the laser has become “smart.” It is connected to a computer program containing a so-called evolution algorithm. One pulse after another is generated. The “fittest” ones survive and become the “parent generation” of the next series of pulses. In other words, it’s like biological evolution. The color mix, amplitude, time, and a number of different parameters can be adjusted, and the final result can be a whole series of specifically tailored pulses in a certain order.

In order to show that it is possible to control reactions in complicated molecules, researchers must choose something that can be measured in quantifiable terms. Jennifer Herek explains:

“We have worked with an antenna complex in a purple bacterium that uses photosynthesis. Light is captured by carotenoid molecules and transferred to chlorophyll molecules. On the way, half of the energy is lost. For technical reasons, this time we chose to “hamper” nature rather than to “enhance” it. With the aid of lasers, we tried to obstruct this specific transfer more. It turned out to be 30% less effective. We were also able to show that all we influenced was these particular molecules, and nothing else. After having simplified the effective train of pulses, we could show that this was so by shifting the phase of the electric field of neighboring pulses in the train.”

“For a long time we have nurtured the dream that chemists have of being able to control a reaction without the constraints you have to put up with when you have two or more substances reacting with each other,” says Professor Villy Sundström at the Section for Chemical Physics. “With this new method we can learn even more about how photosynthesis works and ultimately be able to apply this knowledge in the creation of artificial photosynthesis.

Göran Frankel | alphagalileo
Further information:
http://www.mpq.mpg.de/lachem/reaction-dynamics/research/LH2/LH2project.html

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>