Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA 'barcode' identified for plants

06.02.2008
A 'barcode' gene that can be used to distinguish between the majority of plant species on Earth has been identified by scientists who publish their findings in the Proceedings of the National Academy of Sciences journal today (Monday 4 February 2008).

This gene, which can be used to identify plants using a small sample, could lead to new ways of easily cataloguing different types of plants in species-rich areas like rainforests. It could also lead to accurate methods for identifying plant ingredients in powdered substances, such as in traditional Chinese medicines, and could help to monitor and prevent the illegal transportation of endangered plant species.

The team behind the discovery found that DNA sequences of the gene 'matK' differ among plant species, but are nearly identical in plants of the same species. This means that the matK gene can provide scientists with an easy way of distinguishing between different plants, even closely related species that may look the same to the human eye.

The researchers made this discovery by analysing the DNA from different plant species. They found that when one plant species was closely related to another, differences were usually detected in the matK DNA.

The researchers, led by Dr Vincent Savolainen, dual appointee at Imperial College London's Department of Life Sciences and the Royal Botanic Gardens, Kew, carried out two large-scale field studies: one on the exceptionally diverse species of orchids found in the tropical forests of Costa Rica, and the other on the trees and shrubs of the Kruger National Park in South Africa. Dr Savolainen and his colleagues in the UK worked alongside collaborators from the Universities of Johannesburg and Costa Rica who played a key role in this new discovery.

Using specimens collected from Costa Rica, Dr Savolainen and colleagues were able to use the matK gene to identify 1,600 species of orchid. In the course of this work, they discovered that what was previously assumed to be one species of orchid was actually two distinct species that live on different slopes of the mountains and have differently shaped flowers adapted for different pollinating insects.

In South Africa the team was able to use the matK gene to identify the trees and shrubs of the Kruger National Park, also well known for its big game animals.

Dr Savolainen explains that in the long run the aim is to build on the genetic information his team gathered from Costa Rica and South Africa to create a genetic database of the matK DNA of as many plant species as possible, so that samples can be compared to this database and different species accurately identified.

"In the future we'd like to see this idea of reading plants' genetic barcodes translated into a portable device that can be taken into any environment, which can quickly and easily analyse any plant sample's matK DNA and compare it to a vast database of information, allowing almost instantaneous identification, " he says.

Although Dr Savolainen concedes that such technological applications may be some years away from realisation, he says the potential uses of the matK gene are substantial: "There are so many circumstances in which traditional taxonomic identification of plant species is not practical - whether it be at ports and airports to check if species are being transported illegally, or places like Costa Rica where the sheer richness of one group of plants, like orchids, makes accurate cataloguing difficult."

The matK gene may not, however, be able to be used to identify every plant species on Earth. In a few groups of species, additional genetic information may be required for species-level identification because hybridization - where species cross-breed and genetic material is rearranged - may confuse the information provided by matK.

This research was funded by the Defra Darwin Initiative, the Universities of Johannesburg and Costa Rica, the South African National Research Foundation, the Royal Botanic Gardens, Kew, and the Royal Society.

Joan Ruddock, Minister for Climate Change and Biodiversity said: "This is a great breakthrough that could save many endangered plants. The Defra-funded Darwin Initiative has a reputation for producing real and lasting results and I congratulate everyone involved in this project which could have huge benefits for plant identification and conservation in the future."

Danielle Reeves | alfa
Further information:
http://www.darwin.gov.uk/
http://www.imperial.ac.uk
http://www.kew.org

Further reports about: DNA Identification Savolainen matK orchid plant species

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>