Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacterium sequenced makes rare form of chlorophyll

05.02.2008
Living on "the red edge"

Researchers at Washington University in St. Louis and Arizona State University have sequenced the genome of a rare bacterium that harvests light energy by making an even rarer form of chlorophyll, chlorophyll d. Chlorophyll d absorbs “red edge,” near infrared, long wave length light, invisible to the naked eye.

In so doing, the cyanobacterium Acaryochloris marina, competes with virtually no other plant or bacterium in the world for sunlight. As a result, its genome is massive for a cyanobacterium, comprising 8.3 million base pairs, and sophisticated. The genome is among the very largest of 55 cyanobacterial strains in the world sequenced thus far, and it is the first chlorophyll d –containing organism to be sequenced .

Robert Blankenship. Ph.D., Lucille P. Markey Distinguished Professor in Arts & Sciences at Washington University, and principal investigator of the project, said with every gene of Acaryochloris marina now sequenced and annotated, the immediate goal is to find the enzyme that causes a chemical structure change in chlorophyll d, making it different from primarily chlorophyll a, and b, but also from about nine other forms of chlorophyll.

“The synthesis of chlorophyll by an organism is complex, involving 17 different steps in all,” Blankenship said. “Some place near the end of this process an enzyme transforms a vinyl group to a formyl group to make chlorophyll d. This transformation of chemical forms is not known in any other chlorophyll molecules.”

Blankenship said he and his collaborators have some candidate genes they will test. They hope to insert these genes into an organism that makes just chlorophyll a. If the organism learns to synthesize chlorophyll d with one of the genes, the mystery of chlorophyll d synthesis will be solved, and then the excitement will begin.

Blankenship and his colleagues from both institutions published a paper on their work in the Feb. 4, online edition of the Proceedings of the National Academy of Sciences. The work was supported by the National Science Foundation and also involved collaborators from Australia and Japan. Three Washington University undergraduate students and one graduate student participated in the project, as well as other research personnel.

Harvesting solar power through plants or other organisms that would be genetically altered with the chlorophyll d gene could make them solar power factories that generate and store solar energy. Consider a seven-foot tall corn plant genetically tailored with the chlorophyll d gene to be expressed at the very base of the stalk. While the rest of the plant synthesized chlorophyll a, absorbing short wave light, the base is absorbing “red edge” light in the 710 nanometer range. Energy could be stored in the base without competing with any other part of the plant for photosynthesis, as the rest only makes chlorophyll a. Also, the altered corn using the chlorophyll d gene could become a super plant because of its enhanced ability to harness energy from the sun.

That model is similar to how Acaryochloris marina actually operates in the South Pacific, specifically Australia’s Great Barrier Reef. Discovered just 11 years ago, the cyanobacterium lives in a symbiotic relationship with a sponge-like marine animal popularly called a sea squirt . The Acaryochloris marina lives beneath the sea squirt, which is a marine animal that lives attached to rocks just below the surface of the water. The cyanobacterium absorbs “red edge” light through the tissues of its pal the sea squirt.

The genome, said Blankenship, is “ fat and happy. Acaryochloris marina lies down there using that far red light that no one else can use. The organism has never been under very strong selection pressure to be lean and mean like other bacteria are. It’s kind of in a sweet spot. Living in this environment is what allowed it to have such dramatic genome expansion.”

Blankenship said that once the gene that causes the late-step chemical transformation is found and inserted successfully into other plants or organisms, that it could potentially represent a five percent increase in available light for organisms to use.

“We now have genetic information on a unique organism that makes this type of pigment that no other organism does,” Blankenship said. “We don’t know what all the genes do by any means. But we’ve just begun the analysis. When we find the chlorophyll d enzyme and then look into transferring it into other organisms, we’ll be working to extend the range of potentially useful photosynthesis radiation.’

Robert Blankenship | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: Acaryochloris Blankenship Chlorophyll Genome cyanobacterium organism sequenced

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>