Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers uncover key interaction in cholesterol regulation

05.02.2008
Researchers at UT Southwestern Medical Center have determined the specific way in which a destructive protein binds to and interferes with a molecule that removes low-density lipoproteins (LDL), the so-called “bad” cholesterol, from the blood.

“The practical benefit of this finding is that we can now search for new ways to lower cholesterol by designing targeted antibodies to disrupt this interaction,” said Dr. Jay Horton, professor of internal medicine and molecular genetics and a senior author of the study, which appears online this week in the Proceedings of the National Academy of Sciences.

The protein, called PCSK9, has emerged as an important regulator of “bad” cholesterol in the blood, said Dr. Horton, whose research focuses in part on understanding the protein’s function.

PCSK9 disrupts the activity of a key molecule called the low-density lipoprotein receptor, or LDLR. This molecule, which juts out from the surface of cells, latches on to “bad” cholesterol in the bloodstream and removes it by drawing it into the cells.

... more about:
»Interaction »LDL »LDLR »PCSK9 »receptor

The PCSK9 protein also can latch on to the LDL receptor. This binding, however, triggers a chain of biochemical reactions that leads to the destruction of the LDL receptor. With fewer receptors available, more “bad” cholesterol remains in the bloodstream.

“You want to have LDL receptors to clear LDL from the blood – that’s a good thing,” Dr. Horton said. “So you don’t want to have PCSK9; it normally functions in a harmful way.”

Too much LDL cholesterol in the blood is a major risk factor for heart disease, heart attack and stroke because it contributes to the buildup of plaque that clogs the walls of arteries. More than 25 million people worldwide take a class of drugs called statins to lower their cholesterol to within recommended healthy levels.

To determine exactly how PCSK9 and the LDLR physically interact, the researchers, led by Dr. Hyock Joo Kwon, an instructor in biochemistry, collaborated with Dr. Johann Deisenhofer, professor of biochemistry, an investigator with the Howard Hughes Medical Institute and a senior author of the study. Dr. Deisenhofer shared the 1988 Nobel Prize in Chemistry for his work in discovering the structure of a key protein involved in photosynthesis.

Using X-rays bounced off crystals made up of both PCSK9 and a portion of the LDLR protein, the researchers identified small regions of each protein that attach to each other. They then created a detailed structural model of the area.

“It looks like those portions are absolutely essential for the interaction to take place,” Dr. Horton said.

The researchers are now designing antibodies and small chains of peptides – the building blocks of proteins – that have the ability to jam the interaction between LDLR and PCSK9.

Dr. Horton’s previous studies have shown that mice lacking PCSK9 have LDL cholesterol levels less than half that of normal mice.

Studies by other UT Southwestern researchers have found that people with mutations in the PCSK9 gene, which prevented them from making normal levels of the PCSK9 protein, had LDL cholesterol levels 28 percent lower than individuals without the mutation and were protected from developing coronary heart disease. That research was led by Dr. Jonathan Cohen, professor of internal medicine, and Dr. Helen Hobbs, director of the Eugene McDermott Center for Human Growth and Development.

While statin drugs work by increasing the number of LDL receptors on cells, a drug targeting PCSK9 might prevent the existing receptors from being degraded.

“These studies suggest that inhibiting PCSK9’s action may be another route to lowering LDL cholesterol in individuals with high cholesterol,” said Dr. Horton.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu
http://www.utsouthwestern.org/patientcare/medicalservices/hlv.html

Further reports about: Interaction LDL LDLR PCSK9 receptor

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>