Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trainor Lab prevents rare birth defect by inactivating p53 gene

05.02.2008
Using a mouse model of Treacher Collins Syndrome (TCS), the Stowers Institute’s Trainor Lab has demonstrated that it can prevent this rare disorder of craniofacial development either by inactivating a gene implicated in the abnormality or by inhibiting its protein product.

The work, which was posted to the Web site of the journal Nature Medicine yesterday, is a follow-up to the team’s 2006 discovery of the cellular cause of TCS.

The team evaluated how a mutated TCOF1 gene causes the death of neural crest cells that should otherwise form most of the bone, cartilage, and connective tissue that make up the head and face during embryonic development. The loss of these cells results in abnormal development of the ear, nose, and upper and lower jaw, including cleft palate.

The team discovered that chemical inhibition of a single protein, the product of the p53 gene, could prevent the craniofacial abnormalities caused by the TCOF1 mutation. They also showed that inactivation of the p53 gene itself enabled neural crest cells to survive and form normal craniofacial structures in embryos carrying the TCOF1 mutation.

“Inhibition of the p53 protein was enough to prevent neural crest cells from dying during early embryogenesis and essentially rescue the mouse embryo from the devastating craniofacial features associated with TCS,” said Natalie Jones, Ph.D., formerly a Postdoctoral Research Associate in the Trainor Lab and first author on the paper. “The successful rescue of neural crest cell development in a congenital craniofacial anomaly such as TCS is exciting because it provides an attractive model for the prevention of other craniofacial birth defects of similar origins.”

“These findings are the culmination of years of efforts to better understand TCS,” said Paul Trainor, Ph.D., Associate Investigator and senior author on the paper. “People diagnosed with severe TCS typically undergo multiple, major reconstructive surgeries that are rarely fully corrective. The inhibition of p53 brings us much closer to our ultimate goal — preventing TCS and the suffering it causes altogether.”

“By its very nature, the progress of basic biomedical research is incremental,” said Robb Krumlauf, Ph.D., Scientific Director. “We learn a little bit at a time over many years, and each new discovery contributes to a more comprehensive understanding of a disease. This discovery by the Trainor Lab is what all of those years of hard work are about — ultimately learning enough to treat, cure, or prevent a devastating disease.”

“These meticulously performed experiments by members of the Trainor Lab and their colleagues elegantly demonstrate the power of science to address the cause and prevention of birth defects,” said William Neaves, Ph.D., President and CEO. “All of us at the Stowers Institute celebrate their landmark accomplishment.”

Marie Jennings | EurekAlert!
Further information:
http://www.stowers-institute.org

Further reports about: TCS Trainor birth craniofacial neural p53 specimen processing

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>