Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

T cell immunity enhanced by timing of interleukin-7 therapy

05.02.2008
That the cell nurturing growth factor interleukin-7 can help ramp up the ability of the immune system to remember the pathogenic villains it encounters is well known.

But precisely how this natural protein works its magic on the cells of the immune system is not well understood. Now, however, in research that may have implications for developing vaccines against HIV and cancer, a team of scientists from the University of Wisconsin-Madison has found that the timing of interleuin-7 therapy is critical for increasing the number of killer cells that zero in on and destroy virus-infected cells.

Writing in the current online issue (Feb. 1, 2008) of the Journal of Clinical Investigation, a team led by UW-Madison School of Veterinary Medicine Professor of pathobiological sciences Marulasiddappa Suresh reports that therapeutic administration of interleukin-7 can be linked to a stage of early infection to effectively increase the number of a type of killer cell that recognizes and selectively assassinates virus-infected cells.

"These cells need to get interleukin-7 for their survival," explains Suresh, of the killer immune cell known as CD8 T cells, a type of white blood cell that attacks virus-infected cells, foreign cells and cancer cells. Interleukin-7 is produced in very small amounts in bone marrow, spleen, and the thymus, but scientists have been able to isolate and synthesize the agent, which is now in pre-clinical testing for a variety of conditions.

"This is one of the most exciting cytokines in pre-clinical human trials," says Suresh. "The idea is that it might be used as an immune restorative agent. It is absolutely essential for normal development and functioning of the immune system."

Effectively stimulating the immune system -- the complex of organs and cells that defends the body against infection and disease -- is a grail of biomedical science in the fight against infectious diseases.

Suresh explains that upon infection, the body unleashes an army of T cells to fight infected or rogue cells. But when the body perceives an infection may be contained, the number of T cells it deploys is dramatically reduced. However, a certain number of T cells, known as memory cells and that are capable of recognizing a recently vanquished foe, remain. Stimulating memory T and B cells is the basis of vaccination, but vaccines often do not induce a sufficient number of memory CD8 T cells.

Interleukin-7 is a well-studied growth factor that is known to help generate and maintain the immune system's “memory” CD8 T cells, which have the ability to remember the identity of its targets, such as cancer cells or cells that have been taken over by a virus. A paucity of interleukin-7 is believed to limit the survival and persistence of memoryCD8 T cells.

Despite the promise of interleukin-7 as a means to bolster immunity, an optimal treatment regimen has yet to be determined.

In studies in mice, Suresh and his colleagues found that T cell memory is best enhanced when interleukin-7 is administered during a phase of infection when the number of T cells is ramping down.

In the new Wisconsin study, Suresh's group gave interleukin-7 to mice during different stages of a viral infection. They found that by administering interleukin-7 when the number of T cells is in decline, it is possible to increase the number of memory CD8 T cells that remain to stand guard and protect against re-infection.

"The purpose of the immune response is to expand these cells," says Suresh, explaining that T cells act like serial killers, snuffing one infected cell after another until the viral infection is controlled.

During the expansion phase of infection, when the body is generating the most T cells, administration of interleukin-7 seems to have no effect, according to Suresh. But during the contraction phase, memory is increased.

"We tried this in a DNA vaccine and it works," says Suresh. "Even with the weakest vaccine, we could increase the memory cells and improve protection against infection. What this shows is that the number of memory cells are not predetermined. You can increase them and interleukin-7 drives their proliferation."

Marulasiddappa Suresh | EurekAlert!
Further information:
http://www.vetmed.wisc.edu

Further reports about: CD8 Infection Suresh T cells Vaccine immune system interleukin-7

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>