Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

T cell immunity enhanced by timing of interleukin-7 therapy

05.02.2008
That the cell nurturing growth factor interleukin-7 can help ramp up the ability of the immune system to remember the pathogenic villains it encounters is well known.

But precisely how this natural protein works its magic on the cells of the immune system is not well understood. Now, however, in research that may have implications for developing vaccines against HIV and cancer, a team of scientists from the University of Wisconsin-Madison has found that the timing of interleuin-7 therapy is critical for increasing the number of killer cells that zero in on and destroy virus-infected cells.

Writing in the current online issue (Feb. 1, 2008) of the Journal of Clinical Investigation, a team led by UW-Madison School of Veterinary Medicine Professor of pathobiological sciences Marulasiddappa Suresh reports that therapeutic administration of interleukin-7 can be linked to a stage of early infection to effectively increase the number of a type of killer cell that recognizes and selectively assassinates virus-infected cells.

"These cells need to get interleukin-7 for their survival," explains Suresh, of the killer immune cell known as CD8 T cells, a type of white blood cell that attacks virus-infected cells, foreign cells and cancer cells. Interleukin-7 is produced in very small amounts in bone marrow, spleen, and the thymus, but scientists have been able to isolate and synthesize the agent, which is now in pre-clinical testing for a variety of conditions.

"This is one of the most exciting cytokines in pre-clinical human trials," says Suresh. "The idea is that it might be used as an immune restorative agent. It is absolutely essential for normal development and functioning of the immune system."

Effectively stimulating the immune system -- the complex of organs and cells that defends the body against infection and disease -- is a grail of biomedical science in the fight against infectious diseases.

Suresh explains that upon infection, the body unleashes an army of T cells to fight infected or rogue cells. But when the body perceives an infection may be contained, the number of T cells it deploys is dramatically reduced. However, a certain number of T cells, known as memory cells and that are capable of recognizing a recently vanquished foe, remain. Stimulating memory T and B cells is the basis of vaccination, but vaccines often do not induce a sufficient number of memory CD8 T cells.

Interleukin-7 is a well-studied growth factor that is known to help generate and maintain the immune system's “memory” CD8 T cells, which have the ability to remember the identity of its targets, such as cancer cells or cells that have been taken over by a virus. A paucity of interleukin-7 is believed to limit the survival and persistence of memoryCD8 T cells.

Despite the promise of interleukin-7 as a means to bolster immunity, an optimal treatment regimen has yet to be determined.

In studies in mice, Suresh and his colleagues found that T cell memory is best enhanced when interleukin-7 is administered during a phase of infection when the number of T cells is ramping down.

In the new Wisconsin study, Suresh's group gave interleukin-7 to mice during different stages of a viral infection. They found that by administering interleukin-7 when the number of T cells is in decline, it is possible to increase the number of memory CD8 T cells that remain to stand guard and protect against re-infection.

"The purpose of the immune response is to expand these cells," says Suresh, explaining that T cells act like serial killers, snuffing one infected cell after another until the viral infection is controlled.

During the expansion phase of infection, when the body is generating the most T cells, administration of interleukin-7 seems to have no effect, according to Suresh. But during the contraction phase, memory is increased.

"We tried this in a DNA vaccine and it works," says Suresh. "Even with the weakest vaccine, we could increase the memory cells and improve protection against infection. What this shows is that the number of memory cells are not predetermined. You can increase them and interleukin-7 drives their proliferation."

Marulasiddappa Suresh | EurekAlert!
Further information:
http://www.vetmed.wisc.edu

Further reports about: CD8 Infection Suresh T cells Vaccine immune system interleukin-7

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>