Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

JACS: Protein Folding Modifies the Water in the Environment

05.02.2008
New Knowledge Gained From Terahertz Spectroscopy
RUB Chemistry Observes "THz Dance" Changes

Just a few weeks ago, teams from Bochum, Illinois, and Nevada were able to prove with terahertz (THz) spectroscopy that proteins do modify water molecules in their environment to a long range extent: The water molecules, which generally move around like disco dancers in their collective network motions behave more like in a neat minuet under protein influence.

The group by Prof. Dr. Martina Havenith-Newen (Physical Chemistry II Dpt., RUB) managed to find out more about the rules of this dance. They could show that protein folding changes the dancing steps of the water. A partly unfolded protein will affect water molecules within the dynamical hydration shell to a much less extent than a folded one does. The higher the flexibility of the protein, the less affected is the water. The scientists present their conclusions as a "communication" in the Journal of the American Chemical Society.

Protein Creates Order in Water

In water, weak bonds between two adjacent water molecules, referred to as the hydrogen bridge bonds, are continuously opening and closing: this happens on average every 1.3 pico seconds (one pico second = 10 power -12 seconds). "Even small concentrations of proteins in water lead to measurable changes in collective movements", Prof. Havenith-Newen explains the results of previous studies with THz spectroscopy.

The Folding is the Important Thing

While the folded protein affects up to 1,000 water molecules in its environment, this is only true for the partly unfolded protein to a small extent. If one modifies some parts of the protein through mutation, the effect is less remarkable. These observations were now made by the scientific teams of Prof. Havenith-Newen, Prof. Dr. Martin Gruebele, and Prof. Dr. David M. Leitner from RUB, the University of Illinois and the University of Nevada, respectively. "This shows that water in the environment of folded proteins is different from that in the environment of an unfolded protein", Prof. Havenith-Newen concludes. "This will further support the hypothesis that protein and water are not independent of each other and do influence each other - an effect which has been considered decisive for protein folding, and which may be highly important for protein functions."

New, Highly Precise Method of Proof

THz spectroscopy is a new, especially sensitive method of observing fast water network movement in the close vicinity of proteins with the THz frequencies ranging between microwave and infrared frequencies. Particularly strong THz laser radiation sources lasers, which has been used in chemistry for the first time by RUB, facilitates the observation of proteins in their natural environment during their fast dance with water molecules. The studies which have been published in the Journal of the American Chemical Society were financed by the Human Frontier Science Programme. Martin Gruebele has stayed at the RUB Chemistry Department after being awarded the Friedrich Wilhelm Bessel prize of the Alexander von Humboldt foundation.

Header

S. Ebbinghaus, S. J. Kim, M. Heyden, X. Yu, M. Gruebele, D.M. Leitner, and M. Havenith: Protein sequence- and pH-dependent hydration probed by Terahertz spectroscopy. In: Journal of the American Chemical Society, ASAP Article 10.1021/ja0746520 S0002-7863(07)04652-5, Web Release Date: February 5, 2008, Copyright © 2008 American Chemical Society, http://pubs.acs.org/cgi-bin/abstract.cgi/jacsat/asap/abs/ja0746520.html

More Information

Prof. Dr. Martina Havenith-Newen, Fakulty of Chemistry and Biochemistry at Ruhr-Universität Bochum, Tel. 0234/32-24249, Fax: 0234/32-14183, E-Mail: martina.havenith@ruhr-uni-bochum.de

Dr. Josef König | idw
Further information:
http://pubs.acs.org/cgi-bin/abstract.cgi/jacsat/asap/abs/ja0746520.html

Further reports about: Havenith-Newen Molecules RUB THz spectroscopy water molecules

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>