Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

JACS: Protein Folding Modifies the Water in the Environment

05.02.2008
New Knowledge Gained From Terahertz Spectroscopy
RUB Chemistry Observes "THz Dance" Changes

Just a few weeks ago, teams from Bochum, Illinois, and Nevada were able to prove with terahertz (THz) spectroscopy that proteins do modify water molecules in their environment to a long range extent: The water molecules, which generally move around like disco dancers in their collective network motions behave more like in a neat minuet under protein influence.

The group by Prof. Dr. Martina Havenith-Newen (Physical Chemistry II Dpt., RUB) managed to find out more about the rules of this dance. They could show that protein folding changes the dancing steps of the water. A partly unfolded protein will affect water molecules within the dynamical hydration shell to a much less extent than a folded one does. The higher the flexibility of the protein, the less affected is the water. The scientists present their conclusions as a "communication" in the Journal of the American Chemical Society.

Protein Creates Order in Water

In water, weak bonds between two adjacent water molecules, referred to as the hydrogen bridge bonds, are continuously opening and closing: this happens on average every 1.3 pico seconds (one pico second = 10 power -12 seconds). "Even small concentrations of proteins in water lead to measurable changes in collective movements", Prof. Havenith-Newen explains the results of previous studies with THz spectroscopy.

The Folding is the Important Thing

While the folded protein affects up to 1,000 water molecules in its environment, this is only true for the partly unfolded protein to a small extent. If one modifies some parts of the protein through mutation, the effect is less remarkable. These observations were now made by the scientific teams of Prof. Havenith-Newen, Prof. Dr. Martin Gruebele, and Prof. Dr. David M. Leitner from RUB, the University of Illinois and the University of Nevada, respectively. "This shows that water in the environment of folded proteins is different from that in the environment of an unfolded protein", Prof. Havenith-Newen concludes. "This will further support the hypothesis that protein and water are not independent of each other and do influence each other - an effect which has been considered decisive for protein folding, and which may be highly important for protein functions."

New, Highly Precise Method of Proof

THz spectroscopy is a new, especially sensitive method of observing fast water network movement in the close vicinity of proteins with the THz frequencies ranging between microwave and infrared frequencies. Particularly strong THz laser radiation sources lasers, which has been used in chemistry for the first time by RUB, facilitates the observation of proteins in their natural environment during their fast dance with water molecules. The studies which have been published in the Journal of the American Chemical Society were financed by the Human Frontier Science Programme. Martin Gruebele has stayed at the RUB Chemistry Department after being awarded the Friedrich Wilhelm Bessel prize of the Alexander von Humboldt foundation.

Header

S. Ebbinghaus, S. J. Kim, M. Heyden, X. Yu, M. Gruebele, D.M. Leitner, and M. Havenith: Protein sequence- and pH-dependent hydration probed by Terahertz spectroscopy. In: Journal of the American Chemical Society, ASAP Article 10.1021/ja0746520 S0002-7863(07)04652-5, Web Release Date: February 5, 2008, Copyright © 2008 American Chemical Society, http://pubs.acs.org/cgi-bin/abstract.cgi/jacsat/asap/abs/ja0746520.html

More Information

Prof. Dr. Martina Havenith-Newen, Fakulty of Chemistry and Biochemistry at Ruhr-Universität Bochum, Tel. 0234/32-24249, Fax: 0234/32-14183, E-Mail: martina.havenith@ruhr-uni-bochum.de

Dr. Josef König | idw
Further information:
http://pubs.acs.org/cgi-bin/abstract.cgi/jacsat/asap/abs/ja0746520.html

Further reports about: Havenith-Newen Molecules RUB THz spectroscopy water molecules

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>