Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disrupted genetic regulation causes common disturbance in metabolism of fat

05.02.2008
The disease familial combined hyperlipidemia (FCH) is a common cause of disturbed metabolism of fat and early heart attacks. Uppsala University scientists have now developed a pioneering method and can show for the first time what genes are regulated by the gene USF1, which is known to cause the disease. These findings are being presented today in the leading journal Genome Research.

Familial combined hyperlipidemia is caused by the gene USF1, which in turn regulates many other genes, but until now there have been no techniques for finding which ones. Professor Claes Wadelius, at the Department of Genetics and Pathology, Uppsala University, has devised new methods for analyzing genetic regulation and found a number of genes that govern fat levels and energy conversion. The breakthrough is a result of close collaboration with Professor Jan Komorowski at the Linnaeus Center for Bioinformatics.

How active a gene is is regulated by proteins, called transcription factors, which are bound to the DNA strands. Until now, this has been analyzed in test tubes and only one gene at a time. Claes Wadelius’ research team has developed new high-efficiency methods that improve the results in two crucial ways. On the one hand, living cells are now analyzed, not synthetic genes in test tubes. On the other, the entire human genome is analyzed in a single experiment, not merely a genetic fragment.

The method has been used to find genes that have a disturbed function in the common disease familial combined hyperlipidemia. These patients have elevated levels of cholesterol or other fats, which leads to increased risk of being afflicted by early hardening of the arteries and heart attack. Analyses show that the gene USF1 in turn governs the activities of more than 1,000 genes, several of which determine the body’s levels of fat. It also regulates a number of genes that participate in the cell’s energy production, which provides new ways of understanding disturbances in metabolism. The new methods are 10-100 million times more efficient that the old ones, and the project involved more than a billion analyses. This places great demands on how we register, store, and interpret data.

“Technological advances are making medical research more of an information science. With these precise new methods for analyzing data we have entirely new capabilities for understanding the causes of disturbances in metabolism. In other projects we are using the same methods to understand new causes of cancer,” says Professor Claes Wadelius.

Anneli Waara | alfa
Further information:
http://www.uu.se

Further reports about: Genetic HDL-cholesterol disturbance metabolism

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>