Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disrupted genetic regulation causes common disturbance in metabolism of fat

05.02.2008
The disease familial combined hyperlipidemia (FCH) is a common cause of disturbed metabolism of fat and early heart attacks. Uppsala University scientists have now developed a pioneering method and can show for the first time what genes are regulated by the gene USF1, which is known to cause the disease. These findings are being presented today in the leading journal Genome Research.

Familial combined hyperlipidemia is caused by the gene USF1, which in turn regulates many other genes, but until now there have been no techniques for finding which ones. Professor Claes Wadelius, at the Department of Genetics and Pathology, Uppsala University, has devised new methods for analyzing genetic regulation and found a number of genes that govern fat levels and energy conversion. The breakthrough is a result of close collaboration with Professor Jan Komorowski at the Linnaeus Center for Bioinformatics.

How active a gene is is regulated by proteins, called transcription factors, which are bound to the DNA strands. Until now, this has been analyzed in test tubes and only one gene at a time. Claes Wadelius’ research team has developed new high-efficiency methods that improve the results in two crucial ways. On the one hand, living cells are now analyzed, not synthetic genes in test tubes. On the other, the entire human genome is analyzed in a single experiment, not merely a genetic fragment.

The method has been used to find genes that have a disturbed function in the common disease familial combined hyperlipidemia. These patients have elevated levels of cholesterol or other fats, which leads to increased risk of being afflicted by early hardening of the arteries and heart attack. Analyses show that the gene USF1 in turn governs the activities of more than 1,000 genes, several of which determine the body’s levels of fat. It also regulates a number of genes that participate in the cell’s energy production, which provides new ways of understanding disturbances in metabolism. The new methods are 10-100 million times more efficient that the old ones, and the project involved more than a billion analyses. This places great demands on how we register, store, and interpret data.

“Technological advances are making medical research more of an information science. With these precise new methods for analyzing data we have entirely new capabilities for understanding the causes of disturbances in metabolism. In other projects we are using the same methods to understand new causes of cancer,” says Professor Claes Wadelius.

Anneli Waara | alfa
Further information:
http://www.uu.se

Further reports about: Genetic HDL-cholesterol disturbance metabolism

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>