Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Antidepressants that are more efficient and faster

In the PhD defended by the pharmacologist and biochemist Jorge Emilio Ortega Calvo at the University of the Basque Country, a new anti-depressant treatment strategy is proposed that is capable of improving on the current one with its drawbacks.

Depression is a chronic and recurrent illness that can affect at least 20% of the population at some period in their lifetime, according to a number of studies carried out. Moreover, according to the WHO, by 2020 emotional state disorders could be the foremost or second cause for sick leave from work in the developed countries. Current ant-depressive therapies, nevertheless, are far from optimum.

This was the theme of the PhD presented by the pharmacologist and biochemist from the Basque province of Gipuzkoa, Jorge Emilio Ortega Calvo, undertaken at the Faculty of Medicine and Odontology of the University of the Basque Country (UPV/EHU). Basically it was a study in which an analysis was undertaken of the action mechanisms of current antidepressant pharmacological drugs and new antidepressant treatment strategies put forward and that could be useful in the near future in order to address the failings in the current ones.

The PhD entitled, Nuevas estrategias de potenciación antidepresiva basadas en la interacción entre los sistemas noradrenérgico y serotonérgico centrales. Estudio mediante microdiálisis cerebral in vivo (New strategies of antidepressive boosting based on the interaction between the central noradrenergic and serotonergic systems. A study using in vivo cerebral microdialysis) was directed by Professor of Pharmacology, José Javier Meana Martínez and lecturer in Pharmacology, Luis Felipe Callado Hernando, and which obtained excellent cum laude. While carrying out the PhD, Mr Ortega had the opportunity to spend time at a pharmaceutical multinational in the United States, concretely at the Eli Lilly Laboratories.

... more about:
»Ortega »PhD »braking »cerebral »strategies

Jorge Emilio Ortega Calvo graduated in Pharmacy and Biochemistry from the UPV/EHU and is currently carrying out research in the pharmacological laboratory at the University.

Greater braking effect than normal

What this study proposes is, on the one hand, to make advances in our knowledge about a highly prevalent illness – depression - which is still largely of unknown etiology and, on the other, to develop treatment strategies that are more efficacious than the current ones.

Depression is mainly related to disorders with or deficiencies of the neurotransmitters, noradrenaline and serotonine. In the process of depression, the levels of noradrenaline and serotonine in a number of cerebral areas are altered. The task of anti-depressive drugs is to balance, as it were, these levels. However, the biggest drawback in the current treatment of this illness is that only 60-70% of patients respond to treatment. Moreover, when a person starts to be treated, they normally require at least between two and four weeks before symptoms begin to improve and, on not observing any type of short-term improvement, many stop taking the medication.

Due to this, the aim of this PhD was to study the action mechanisms of these drugs in order to, on the one hand, identify treatments that act from the start and, on the other, try to improve the situation for patients who in principle do not respond to this treatment.

To this end, the usual treatments are combined with new targets – the antagonist pharmaceutical drugs of the adrenoceptors a2 that help to boost or increase neurotransmission existing in the brain. Given that it has been observed that in post-mortem brains of patients previously diagnosed with depression and who had committed suicide, these adrenoceptors were found to be altered, their function increased and there was a greater braking effect than normal. This braking impeded the neurotransmission systems from functioning correctly. “If we stop this greater braking effect in those persons suffering depression, it could be that the anti-depressive pharmacological drug might start to act”, he added.

The approach to this study involved animals using the technique of in vivo cerebral microdialysis; “that is, using surgery we introduce probes in certain cerebral zones, and we collected and measured the amount of neurotransmitters in these areas, in order to subsequently see how they are modified on administering different pharmaceutical drugs”.

The results of the thesis point to the fact that the new strategies proposed are able, on the one hand, of improving the percentage response as regards the number of persons responding to treatment and, on the other, of shortening the time period between the initiation of treatment and therapeutic response. “Which may indicate that if all this is taken to the level of a clinical study and trials with patients suffering from depression are begun, perhaps there will be a faster response and amongst a greater number of patients” he stated.

Irati Kortabitarte | alfa
Further information:

Further reports about: Ortega PhD braking cerebral strategies

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>