Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the Heart Takes Form: MDC Researchers Describe Early Heart Development in Vertebrates

05.02.2008
For the first time, scientists have described the transition of the flat, disc-shaped heart field into the primary linear heart tube. The investigations on zebrafish embryos were made by Stefan Rohr and Cécile Otten, members of the research group of Dr. Salim Abdelilah-Seyfried of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany. The research results of the developmental biologists have just been published in the online edition of Circulation Research*.

Currently, one of the most important areas to explore in developmental biology is how cellular transformation processes lead to the three-dimensional formation (morphogenesis) of organs. A better understanding of these processes is a basic requirement for elucidating congenital malformation of organs.

The heart, for instance, develops in the embryo from a flat disc, the so-called heart field. The tissue of this two-dimensional structure consists of a thin layer of epithelial cells. Similar cells line all inner organs, but also the skin and blood vessels.

Which cellular processes drive the formation of the three-dimensional heart tube that then evolves into a multi-chamber, hollow organ? Do individual cells migrate and form this hollow structure by fusing with other cells or does the whole heart field change its form? Until now, all of these were open questions in developmental biology.

... more about:
»Developmental »Embryo »Heart »Organ

Stefan Rohr, PhD student with Dr. Abdelilah-Seyfried, used zebrafish (Latin: Danio rerio) for his investigations because their embryos are transparent, allowing researchers to observe each cell of the living organism under the microscope. That is why these vertebrates are particularly interesting for developmental biologists.

Surprisingly, the cells of the right and left heart fields behave very differently, as Stefan Rohr was able to demonstrate. The cells of the right heart field form a kind of lip which, as a group, migrates underneath the cells of the left heart field, thereby "involuting" or turning on its own axis once again. This complex inversion of the right heart field generates the ventral floor, whereas the noninvoluting left heart field gives rise to the future roof of the heart tube.

This process is steered by various genes, which also regulate the right/left asymmetry of vertebrates. When the researchers switched off one of these genes, the cells often migrated in the wrong direction and the lip was formed in the wrong place.

*Asymmetric Involution of the Myocardial Field Drives Heart Tube Formation in Zebrafish

Stefan Rohr, Cécile Otten and Salim Abdelilah-Seyfried

From the Max Delbrück Center for Molecular Medicine (S.R., C.O., S.A.-S.), Berlin; and Department of Biology (S.R.), University of Freiburg, Germany.

Correspondence to Salim Abdelilah-Seyfried, Max Delbrück Center for Molecular Medicine, Robert-Rössle Str. 10, 13125 Berlin, Germany. E-mail: salim@mdc-berlin.de

Circulation Research is available at http://circres.ahajournals.org

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | idw
Further information:
http://circres.ahajournals.org
http://www.mdc-berlin.de/englisch/about_the_mdc/public_relations/e_index.htm

Further reports about: Developmental Embryo Heart Organ

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>