Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers uncover more about how poxviruses evade the immune system

04.02.2008
Findings by SLU, UAB teams could lead to new drugs targeting inflammatory and immune disorders

Scientists at Saint Louis University and the University of Alabama at Birmingham have uncovered important new information about a key protein that allows viruses such as smallpox to replicate and wreak havoc on the immune system.

The findings further our understanding of how the pox family of viruses work to subvert the immune system, the researchers say. They also believe their work could one day be used to develop new drugs to combat a variety of inflammatory and immunological disorders, including rheumatoid arthritis and some forms of heart disease.

The research is soon to be published in an early online edition of the Proceedings of the National Academy of Sciences(www.pnas.org).

The paper describes the structure and actions of a powerful substance called interferon-gamma binding protein, which is notorious for the role it plays in helping the poxviruses to replicate. The research explores the interferon-gamma binding protein found in the mousepox virus – one of the family of viruses that also includes smallpox, monkeypox and cowpox.

“Cracking open and describing the structure and actions of interferon-gamma binding protein is incredibly exciting, given the important role this substance plays in subverting the immune system,” said Mark Buller, Ph.D., professor of microbiology and immunology at the Saint Louis University School of Medicine and one of the study’s authors. “This breakthrough is something that many others have tried and failed to achieve.”

Normally when a virus enters the bloodstream, the immune system responds by producing a substance called interferon-gamma, which assists the development of the immune response that’s responsible for ridding the body of the virus.

Poxviruses, however, all come encoded with a potent weapon to evade the immune system: interferon-gamma binding protein. As its name implies, the protein literally binds to interferon-gamma and immobilizes it, preventing it from marshalling the immune system’s defenses. The poxvirus is then able to replicate and cause immense damage.

The research describes how interferon-gamma binding protein looks and behaves on the molecular level during this process, something not previously understood.

“The poxviruses are able to evade the immune system very skillfully,” Buller said, “so we wanted to identify exactly how these viruses work – what makes them so effective and efficient.”

Buller added that the findings have great potential for use in developing drugs that target immunological and inflammatory disorders, including a type of heart disease called atherosclerosis (sometimes referred to as hardening of the arteries), inflammatory bowel diseases (such as Crohn’s disease and ulcerative colitis) and rheumatoid arthritis.

Of all the poxviruses, smallpox in particular has played a gruesome role in human history. The virus is estimated to have caused between 300 million and 500 million deaths in the 20th century alone. Though smallpox was declared officially eradicated in 1979, many experts fear that clandestine samples of the virus may have survived – thus making it a major bioterrorism concern.

“The damage that the smallpox virus has done to mankind is horrific and enormous, which is why we think it’s so important to understand more about the poxviruses and how they operate,” Buller said. “The more knowledge we have, the better we should be able to cope with other major viruses and diseases in the future.”

Buller pointed to co-author Tony Nuara as being critical to the team’s success in understanding more about interferon-gamma binding protein. Nuara, now a fourth-year student at Saint Louis University School of Medicine, was working on his Ph.D. in molecular microbiology when taking part in the research effort.

“Without Tony, this research wouldn’t have happened,” Buller said. “He solved huge numbers of problems and figured out some answers to puzzling questions that previously had no answer.”

(For more information on Nuara and his contribution to the research effort, go to www.slu.edu/x20435.xml).

Mark R. Walter, Ph.D., associate professor of microbiology at the University of Alabama at Birmingham and the paper’s senior author, also noted the efforts of co-authors Sung Il Yoon, Ph.D., Brandi C. Jones, Naomi J. Logsdon and Leigh J. Walter, all of whose work contributed to determining the three-dimensional structure of the binding protein.

“The structure provides a visual blueprint to guide our future studies on interferon-gamma binding protein, which one day may be used to prevent inflammatory disease,” Mark Walter said. “This is clearly a notable achievement.”

Donn Walker | EurekAlert!
Further information:
http://www.slu.edu
http://www.slu.edu/x20435.xml

Further reports about: Buller evade immune immune system inflammatory interferon-gamma poxvirus

More articles from Life Sciences:

nachricht Synthetic nanoparticles achieve the complexity of protein molecules
24.01.2017 | Carnegie Mellon University

nachricht Immune Defense Without Collateral Damage
24.01.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>