Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers uncover more about how poxviruses evade the immune system

04.02.2008
Findings by SLU, UAB teams could lead to new drugs targeting inflammatory and immune disorders

Scientists at Saint Louis University and the University of Alabama at Birmingham have uncovered important new information about a key protein that allows viruses such as smallpox to replicate and wreak havoc on the immune system.

The findings further our understanding of how the pox family of viruses work to subvert the immune system, the researchers say. They also believe their work could one day be used to develop new drugs to combat a variety of inflammatory and immunological disorders, including rheumatoid arthritis and some forms of heart disease.

The research is soon to be published in an early online edition of the Proceedings of the National Academy of Sciences(www.pnas.org).

The paper describes the structure and actions of a powerful substance called interferon-gamma binding protein, which is notorious for the role it plays in helping the poxviruses to replicate. The research explores the interferon-gamma binding protein found in the mousepox virus – one of the family of viruses that also includes smallpox, monkeypox and cowpox.

“Cracking open and describing the structure and actions of interferon-gamma binding protein is incredibly exciting, given the important role this substance plays in subverting the immune system,” said Mark Buller, Ph.D., professor of microbiology and immunology at the Saint Louis University School of Medicine and one of the study’s authors. “This breakthrough is something that many others have tried and failed to achieve.”

Normally when a virus enters the bloodstream, the immune system responds by producing a substance called interferon-gamma, which assists the development of the immune response that’s responsible for ridding the body of the virus.

Poxviruses, however, all come encoded with a potent weapon to evade the immune system: interferon-gamma binding protein. As its name implies, the protein literally binds to interferon-gamma and immobilizes it, preventing it from marshalling the immune system’s defenses. The poxvirus is then able to replicate and cause immense damage.

The research describes how interferon-gamma binding protein looks and behaves on the molecular level during this process, something not previously understood.

“The poxviruses are able to evade the immune system very skillfully,” Buller said, “so we wanted to identify exactly how these viruses work – what makes them so effective and efficient.”

Buller added that the findings have great potential for use in developing drugs that target immunological and inflammatory disorders, including a type of heart disease called atherosclerosis (sometimes referred to as hardening of the arteries), inflammatory bowel diseases (such as Crohn’s disease and ulcerative colitis) and rheumatoid arthritis.

Of all the poxviruses, smallpox in particular has played a gruesome role in human history. The virus is estimated to have caused between 300 million and 500 million deaths in the 20th century alone. Though smallpox was declared officially eradicated in 1979, many experts fear that clandestine samples of the virus may have survived – thus making it a major bioterrorism concern.

“The damage that the smallpox virus has done to mankind is horrific and enormous, which is why we think it’s so important to understand more about the poxviruses and how they operate,” Buller said. “The more knowledge we have, the better we should be able to cope with other major viruses and diseases in the future.”

Buller pointed to co-author Tony Nuara as being critical to the team’s success in understanding more about interferon-gamma binding protein. Nuara, now a fourth-year student at Saint Louis University School of Medicine, was working on his Ph.D. in molecular microbiology when taking part in the research effort.

“Without Tony, this research wouldn’t have happened,” Buller said. “He solved huge numbers of problems and figured out some answers to puzzling questions that previously had no answer.”

(For more information on Nuara and his contribution to the research effort, go to www.slu.edu/x20435.xml).

Mark R. Walter, Ph.D., associate professor of microbiology at the University of Alabama at Birmingham and the paper’s senior author, also noted the efforts of co-authors Sung Il Yoon, Ph.D., Brandi C. Jones, Naomi J. Logsdon and Leigh J. Walter, all of whose work contributed to determining the three-dimensional structure of the binding protein.

“The structure provides a visual blueprint to guide our future studies on interferon-gamma binding protein, which one day may be used to prevent inflammatory disease,” Mark Walter said. “This is clearly a notable achievement.”

Donn Walker | EurekAlert!
Further information:
http://www.slu.edu
http://www.slu.edu/x20435.xml

Further reports about: Buller evade immune immune system inflammatory interferon-gamma poxvirus

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>