Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough in research on female fertility

01.02.2008
Researchers at Umeå University in Sweden have identified the molecular signaling path that governs the activation of dormant, immature follicles that exist in a woman’s ovaries.

This discovery, published in the latest issue of the journal Science, may mean, among other things, that some women who have been affected by childlessness can undergo more in vitro fertilization attempts in the future.

For women to be fertile during most of their lives it is important that the great majority of their primary follicles lie ‘dormant’ or inactive in the ovaries. Menopause occurs when all of the primary follicles have reached maturity and no more eggs are available for ovulation.

The mechanisms that control the early activation of these dormant follicles, that is, when they are stimulate to begin to grow and mature, have been unknown until now. Kui Liu’s research team at the Department of Medical Chemistry and Biophysics, Umeå University, can now show that the activation of follicles is governed by the signaling path PTEN-PI3K.

... more about:
»fertility »follicles »primary

In a mouse model where the gene that codes for the PTEN protein is inactivated specifically in egg cells, all follicles are activated prematurely and the ovary is emptied of all eggs at a young age. In a possibly similar manner the ovaries are emptied of their eggs in women who suffer from the disease premature ovarian failure (POF), which leads to the onset of menopause much earlier than normal.

This discovery is believed to be of broad physiological, clinical, and practical significance. Previously it has not been possible to use inactive primary follicles for in vitro fertilization, since it has not been possible to get them to mature when they are cultured in a laboratory.

Besides the fact that these findings enhance our knowledge of what governs the length of a woman’s period of fertility, the results may also make it possible in the future to activate the maturation and grown of primary follicles in test tubes. This means that the supply of follicles for in vitro fertilization would be greater. This would be the case not only for humans but also for pets, cattle, and threatened animal species.

The discoveries are therefore important not only for the health of women but also for enhancing the fertility of animals in agriculture and for the possibility of saving animal species that are threatened with extinction and having trouble reproducing.

Bertil Born | alfa
Further information:
http://www.umu.se

Further reports about: fertility follicles primary

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>