Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Breakthrough in research on female fertility

Researchers at Umeå University in Sweden have identified the molecular signaling path that governs the activation of dormant, immature follicles that exist in a woman’s ovaries.

This discovery, published in the latest issue of the journal Science, may mean, among other things, that some women who have been affected by childlessness can undergo more in vitro fertilization attempts in the future.

For women to be fertile during most of their lives it is important that the great majority of their primary follicles lie ‘dormant’ or inactive in the ovaries. Menopause occurs when all of the primary follicles have reached maturity and no more eggs are available for ovulation.

The mechanisms that control the early activation of these dormant follicles, that is, when they are stimulate to begin to grow and mature, have been unknown until now. Kui Liu’s research team at the Department of Medical Chemistry and Biophysics, Umeå University, can now show that the activation of follicles is governed by the signaling path PTEN-PI3K.

... more about:
»fertility »follicles »primary

In a mouse model where the gene that codes for the PTEN protein is inactivated specifically in egg cells, all follicles are activated prematurely and the ovary is emptied of all eggs at a young age. In a possibly similar manner the ovaries are emptied of their eggs in women who suffer from the disease premature ovarian failure (POF), which leads to the onset of menopause much earlier than normal.

This discovery is believed to be of broad physiological, clinical, and practical significance. Previously it has not been possible to use inactive primary follicles for in vitro fertilization, since it has not been possible to get them to mature when they are cultured in a laboratory.

Besides the fact that these findings enhance our knowledge of what governs the length of a woman’s period of fertility, the results may also make it possible in the future to activate the maturation and grown of primary follicles in test tubes. This means that the supply of follicles for in vitro fertilization would be greater. This would be the case not only for humans but also for pets, cattle, and threatened animal species.

The discoveries are therefore important not only for the health of women but also for enhancing the fertility of animals in agriculture and for the possibility of saving animal species that are threatened with extinction and having trouble reproducing.

Bertil Born | alfa
Further information:

Further reports about: fertility follicles primary

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>