Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genesis of adult leukemia mapped

01.02.2008
Long-term bacterial infections like pneumonia can cause a type of white blood corpuscle to transform into tumor cells. A study from Linköping University in Sweden and elsewhere explains how this can be the genesis of the disease chronic lymphocytic leukemia (CLL).

Chronic lymphocytic leukemia (CLL)-­the most common form of leukemia in adults-­arises from a special type of white blood corpuscle, B lymphocytes, which normally produce antibodies to combat bacteria and viruses that we are exposed to. It is not known today what events lead to this disease.

A research team headed by Anders Rosén, professor of cell biology at Linköping University, has now established for the first time that the antibodies that CLL cells produce are highly specialized to recognize certain structures on the surface of bacteria and the body's own proteins (autoantigens).

The findings are being published on Monday in the respected hematological journal Blood. The key point is that the CLL antibodies also bind to damaged and dying (apoptotic) cells, which indicates that the B lymphocytes that give rise to CLL may be frontline defense cells. These are thought to have the extremely important task of using their antibodies to rapidly reveal the slightest breach in damaged mucous lining or skin, created by bacteria or other microorganisms.

... more about:
»Antibodies »CLL »leukemia »lymphocytes

But in long-term infections, these B lymphocytes can start to multiply excessively and rapidly. This increases the risk of chromosome damage, which in turn can cause them to turn into leukemia cells. The study now being published contributes to our understanding of how these B lymphocytes function and why they can be transformed into tumors.

CLL afflicts 400-500 people in Sweden each year, primarily among those aged 65-70 and more often among men than women. The disease has a highly varied course, with many patients living for decades with hardly any treatment, while others die within a few years despite treatment.

The research team behind the study also includes the doctoral students Eva Hellqvist and Anna Lanemo-Myrhinder, Linköping University, and Sohvi Hörkkö, Oulu, Finland, and Richard Rosenquist, Uppsala, Sweden.

The article, "A new perspective: molecular motifs on oxidized-LDL, apoptotic cells, and bacteria are targets for chronic lymphocytic leukemia antibodies" is being published in Blood's First Edition Papers.

Contact: Anders Rosén, phone: +46 (0)13-222794; cell phone: +46 (0)707-303460, anders.rosen@ibk.liu.se

Pressofficer Åke Hjelm; ake.hjelm@liu.se; +46-13 281 395

Åke Hjelm | idw
Further information:
http://www.vr.se
http://bloodjournal.hematologylibrary.org/papbyrecent.dtl

Further reports about: Antibodies CLL leukemia lymphocytes

More articles from Life Sciences:

nachricht Light-driven reaction converts carbon dioxide into fuel
23.02.2017 | Duke University

nachricht Oil and gas wastewater spills alter microbes in West Virginia waters
23.02.2017 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>