Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

They Were Right After All

31.01.2008
Disputed total synthesis of quinine by Woodward and Doering confirmed

Drugs derived from cinchona bark, known as cinchona alkaloids, have been used in healing from ancient times. The most prominent representative of this group is quinine, a bitter substance contained in beverages such as tonic water and used in modern medicine to combat malaria.

As early as 1945, Robert Burns Woodward and William von Eggers Doering (Harvard University) described how to synthesize quinine in the laboratory. The last step of this “formal” total synthesis, a three-step reaction procedure previously described by Paul Rabe and Karl Kindler in 1918, has continued to be the subject of much controversy to this day. Aaron C. Smith and Robert M. Williams at Colorado State University (USA) have now successfully reproduced the Rabe–Kindler protocol. As described in an Angewandte Chemie article dedicated to Doering on his 90th birthday, they repeated the entire procedure without employing any modern methods.

Had they done it or not? That has been the question for decades. Woodward and Doering published the synthesis of d-quinotoxine in 1944. Based on the conversion of d-quinotoxine into quinine described by Rabe and Kindler in 1918, they claimed to have derived the total synthesis of quinine, though they had not actually completed this last step themselves before publishing. Their “formal” total synthesis was strongly challenged and was even dismissed as a “myth” by Gilbert Stork (Columbia University) in 2001.

... more about:
»Doering »Woodward »procedure »quinine »synthesis

“Quinine and the cinchona bark alkaloids play an important role in modern medicine. It is thus amazing that no attempts to reproduce the Rabe–Kindler conversion of quinotoxine into quinine have been published,” marvels Williams. Smith and Williams reviewed the old publications, researched further references, and set themselves the task of repeating the procedure outlined by Rabe and Kindler—and with techniques available at the time. Initially, the yield of quinine they obtained was far too low. The key turned out to be the aluminum powder used as a reducing agent in the last step. It must not be too fresh, instead it must be exposed to air for a while first to produce a small amount of aluminum oxide. This results in yields of quinine in agreement with those in the old publications.

“Analytically pure quinine can be isolated from this reaction by the selective crystallization of the corresponding tartrate salt, just as described by Rabe in 1939,” says Williams. “We have thus corroborated Rabe and Kindler’s 1918 publication. Woodward and Doering could theoretically also have followed this procedure in 1944.”

Author: Robert M. Williams, Colorado State University (USA), http://rwindigo1.chm.colostate.edu/

Title: Rabe Rest in Peace: Confirmation of the Rabe-Kindler Conversion of d-Quinotoxine to Quinine: Experimental Affirmation of the Woodward-Doering Formal Total Synthesis of Quinine

Angewandte Chemie International Edition, doi: 10.1002/anie.200705421

Robert M. Williams | Angewandte Chemie
Further information:
http://rwindigo1.chm.colostate.edu/
http://pressroom.angewandte.org

Further reports about: Doering Woodward procedure quinine synthesis

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>