Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

They Were Right After All

31.01.2008
Disputed total synthesis of quinine by Woodward and Doering confirmed

Drugs derived from cinchona bark, known as cinchona alkaloids, have been used in healing from ancient times. The most prominent representative of this group is quinine, a bitter substance contained in beverages such as tonic water and used in modern medicine to combat malaria.

As early as 1945, Robert Burns Woodward and William von Eggers Doering (Harvard University) described how to synthesize quinine in the laboratory. The last step of this “formal” total synthesis, a three-step reaction procedure previously described by Paul Rabe and Karl Kindler in 1918, has continued to be the subject of much controversy to this day. Aaron C. Smith and Robert M. Williams at Colorado State University (USA) have now successfully reproduced the Rabe–Kindler protocol. As described in an Angewandte Chemie article dedicated to Doering on his 90th birthday, they repeated the entire procedure without employing any modern methods.

Had they done it or not? That has been the question for decades. Woodward and Doering published the synthesis of d-quinotoxine in 1944. Based on the conversion of d-quinotoxine into quinine described by Rabe and Kindler in 1918, they claimed to have derived the total synthesis of quinine, though they had not actually completed this last step themselves before publishing. Their “formal” total synthesis was strongly challenged and was even dismissed as a “myth” by Gilbert Stork (Columbia University) in 2001.

... more about:
»Doering »Woodward »procedure »quinine »synthesis

“Quinine and the cinchona bark alkaloids play an important role in modern medicine. It is thus amazing that no attempts to reproduce the Rabe–Kindler conversion of quinotoxine into quinine have been published,” marvels Williams. Smith and Williams reviewed the old publications, researched further references, and set themselves the task of repeating the procedure outlined by Rabe and Kindler—and with techniques available at the time. Initially, the yield of quinine they obtained was far too low. The key turned out to be the aluminum powder used as a reducing agent in the last step. It must not be too fresh, instead it must be exposed to air for a while first to produce a small amount of aluminum oxide. This results in yields of quinine in agreement with those in the old publications.

“Analytically pure quinine can be isolated from this reaction by the selective crystallization of the corresponding tartrate salt, just as described by Rabe in 1939,” says Williams. “We have thus corroborated Rabe and Kindler’s 1918 publication. Woodward and Doering could theoretically also have followed this procedure in 1944.”

Author: Robert M. Williams, Colorado State University (USA), http://rwindigo1.chm.colostate.edu/

Title: Rabe Rest in Peace: Confirmation of the Rabe-Kindler Conversion of d-Quinotoxine to Quinine: Experimental Affirmation of the Woodward-Doering Formal Total Synthesis of Quinine

Angewandte Chemie International Edition, doi: 10.1002/anie.200705421

Robert M. Williams | Angewandte Chemie
Further information:
http://rwindigo1.chm.colostate.edu/
http://pressroom.angewandte.org

Further reports about: Doering Woodward procedure quinine synthesis

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>