Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Pitter Patter of Little Feet . . . Climbing Straight Up a Wall

31.01.2008
New adhesive is first to mimic quick catch and rapid release traits of a gecko's foot

Building upon several years of research into the gecko's uncanny ability to climb sheer walls, researchers at the University of California, Berkeley, have developed an adhesive that is the first to master the easy attach and easy release of the reptile's padded feet. The material could prove useful for a range of products, from climbing equipment to medical devices.

Unlike duct tape or glue, the new material is crafted from millions of tiny, hard, plastic fibers that establish grip; a mere square two centimeters on a side can support 400 grams (close to a pound). While tape sticks when it presses onto a surface, the new adhesive sticks as it slides on a surface and releases as it lifts -- this is the trick behind a gecko's speedy vertical escapes.

The new study appeared online Jan. 23, 2008, in the Journal of the Royal Society Interface.

... more about:
»Gecko »adhesive »fibers

There are other synthetic adhesives inspired by gecko feet and they adhere much like conventional tape. In contrast, the new adhesive brushes along a surface to develop traction. While ideal for hanging posters, the characteristic is even more important for any application that requires movement, such as climbing.

"The gecko has a very sophisticated hierarchical structure of compliant toes, microfibers, nanofibers and nanoattachment plates that allows the foot to attach and release with very little effort," said co-author and Berkeley professor Ron Fearing, "The gecko makes it look simple, but the animal needs to control the directions it is moving its toes--correct movement equates to little effort," he said.

The new material is also novel in that it gets stronger with use. In experiments, it tightened its hold as it was rubbed repeatedly against a glass plate. The extra strength is caused by the fibers bending over to make more contact, yet once released, the fibers returned to their original shape. The research team is exploring ways to permanently bend the fibers so that the grip strength is its strongest from the outset, no massaging required.

According to Fearing, the new material is the first to mimic the nature of the gecko's characteristic "non-sticky by default" feet. The Berkeley researchers, all engineers, have worked closely with biologists Robert Full, also at Berkeley, and Kellar Autumn of Lewis and Clark College in Portland, Ore., to uncover the key natural properties behind that unique foot, the secret to high mobility on sheer surfaces.

Fearing and his colleagues are part of an NSF-supported Nanoscale Interdisciplinary Research Team (NIRT) that was specifically tasked in 2003 with developing biologically-inspired synthetic gecko adhesives.

"The results of this project are an impressive example of how teaming engineers with biologists results in a better understanding of the role of 'engineering' in nature," says Lynn Preston, the NSF officer who supported these NIRT researchers, and many other teams of engineers and biologists, through her leadership of NSF's Engineering Research Centers program. "This is a perfect example of how to turn that understanding into products that are as sophisticated as those developed by 'Mother Nature'."

Additional details about the research are available at:

Smart Gecko Tape: http://robotics.eecs.berkeley.edu/~ronf/Gecko/interface08.html

A video showing the tape under testing in the laboratory is available at: http://www.nsf.gov/news/longurl.cfm?id=27

Josh Chamot | EurekAlert!
Further information:
http://www.nsf.gov
http://www.nsf.gov/news/news_summ.jsp?cntn_id=111051&org=NSF&from=news

Further reports about: Gecko adhesive fibers

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>