Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

After more than 100 years apart, webworms devastate New Zealand parsnips

31.01.2008
What could be lower than the lowly parsnip, a root once prized for its portable starchiness but which was long ago displaced by the more palatable potato?

Perhaps only the parsnip webworm gets less respect. An age-old enemy of the parsnip, the webworm is one of very few insects able to overcome the plant’s chemical defenses. The tenacious parsnip webworm has followed the weedy version of the parsnip in its transit from its ancestral home in Eurasia to Europe, North America and – most recently – New Zealand.

The long association of the parsnip (Pastinaca sativa) and parsnip webworm (Depressaria pastinacella) offers a unique window on the complex interaction of plant and insect enemies, according to a study appearing this week in the Proceedings of the National Academy of Sciences. And the recent appearance of parsnip webworms in New Zealand, more than 100 years after the parsnip first arrived there, offers the best view yet of how these species influence one another.

The research team, led by University of Illinois entomology professor and department head May Berenbaum, made two key findings. First, the researchers found, the New Zealand parsnips had significantly lower levels of certain chemical defenses than parsnips growing in Europe and North America, where webworms are a constant threat. Second, the New Zealand parsnip webworms were dramatically affecting the plant’s ability to reproduce. The webworm caterpillars eat the parsnip flowers and burrow into their stalks.
... more about:
»Berenbaum »furanocoumarin »insect »levels »parsnip »webworm

parsnip plants

“In certain populations affected by webworms, 75 percent of the plants were completely devoid of any reproductive parts,” said Art Zangerl, a senior research scientist in the department of entomology and co-author on the paper. “The affected plants were contributing zero fitness, which is really dramatic. We don’t often see that.”

Fitness is a measure of a species’ ability to successfully reproduce. Environmental factors that reduce the fitness of an organism – by, for example, destroying all of its offspring – can influence the course of its evolutionary trajectory. Survivors less susceptible to that environmental factor, or selective agent, enjoy a reproductive advantage, contributing more offspring, and more of their genetic attributes, to subsequent generations.

In New Zealand, the newly arrived parsnip webworms are a major selective agent, Zangerl said, wiping out a majority of the flowering parsnips.

The altered chemical defenses of New Zealand parsnips are probably allowing the webworms to feast on most of the plants in any given locale, Berenbaum said.

The parsnip’s chemical defenses normally include a good dose of furanocoumarins, a class of organic compounds that can be toxic to insects that eat the plant. While the parsnip webworm has evolved to tolerate large doses of furanocoumarins in its diet (it can eat up to 5 percent of its body weight of these toxins) the chemicals do limit its capacity to inflict damage.

What isn’t clear is whether the absence of parsnip webworms in New Zealand for more than 100 years allowed the parsnips to let down their guard, Berenbaum said.

“Parsnips have been in New Zealand since the 19th century,” she said. Absent an aggressive enemy like the webworm, the parsnip had no reason to keep producing large amounts of furanocoumarins.

“It could be simply that the parsnips have had 100 years to relax,” Berenbaum said.

Other factors may explain the lower levels of certain furanocoumarins, however, she said. It could be that the parsnips that were first brought to New Zealand had less of these chemicals to begin with. Or perhaps the soil or climate influenced their evolution.

The appearance of parsnip webworms in New Zealand offers an appealing research opportunity, Berenbaum said. The researchers will be able to measure any changes in plant chemistry that result from the webworm infestation.

“Here, we’re looking at one variable, and it’s the insect,” she said. “The soil is essentially the same as it was 10 years ago. The climate is more or less the same.

“The neighboring plants are the same. The only variable is the insect and we have shown that the insect is a selective agent.”

Berenbaum and Zangerl have spent several decades studying the co-evolution of the parsnip and its webworm.

In the late 1990s, they studied pre-1900 museum specimens of parsnips collected in the U.S. They found that the furanocoumarin compound sphondin – produced in high levels in parsnips growing in the U.S. today – occurred at low levels or not at all in the oldest museum specimens. Early colonists brought parsnips to the New World in the early 17th century, but the parsnip webworms did not arrive for another two centuries. The webworms have difficulty metabolizing sphondin.

This suggested that the plants ramped up production of sphondin in response to the webworm infestation, the researchers concluded.

These findings have implications for those hoping to manage invasive weeds by importing the insects that attack them in their native land, Berenbaum said. While such strategies may appear to be effective initially, the plants may be able to adjust to the insect threats over time by upping their chemical defenses. Only time, and more data collected in New Zealand, will determine if this occurs, and if it does, how quickly the plants can respond, she said.

M.C. Stanley, of the University of Auckland, New Zealand, was a co-author on the study.

This research was supported in part by a seed grant from the National Science Foundation.

Editor’s note: To reach May Berenbaum, call 217-333-7784; e-mail: maybe@uiuc.edu.

Diana Yates | University of Illinois
Further information:
http://www.uiuc.edu

Further reports about: Berenbaum furanocoumarin insect levels parsnip webworm

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>