Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snakes can Hear Stereo Sound from the Sand

30.01.2008
Biophysicists of the Technical Universtiy Munich and Bernstein Center for Computational Neuroscience publish in Physical Review Letters
It is often believed that snakes cannot hear. This presumption is fed by the fact that snakes lack an outer ear and that scientific evidence of snakes

Copyright 2002: R.D.L. Mastenbroek & Dexter Bressers

responding to sound is scarce. Snakes do, however, possess an inner ear with a functional cochlea.

In a recent article in Physical Review Letters* scientists from the Technical University Munich (TUM), Germany, and the Bernstein Center for Computational Neuroscience (BCCN) present evidence that snakes use this structure to detect minute vibrations of the sand surface that are caused by prey moving. Their ears are sensitive enough to not only "hear" the prey approaching, but also to allow the brain, i.e., the auditory system, to localize the direction it is coming from. The work was carried out by J. Leo van Hemmen and Paul Friedel, scientists at the Biophysics Department of the TUM and BCCN, together with their colleague Bruce Young from the Biology Department of Washburn University at Topeka (KS, USA).

... more about:
»Sound »Surface »Vibration »Wave

Any disturbance at a sandy surface leads to vibration waves that radiate away from the source along the surface. These waves behave just like ripples on the surface of a pond after a stone is dropped into the water. The sand waves, however, propagate much quicker (the speed is about 50 meters per second) than at the water surface but on the other hand much more slowly than for instance in stone (or concrete) and the amplitude of the waves may be as small as a couple of thousands of a millimeter. Yet a snake can detect these small ripples. If it rests its head on the ground, the two sides of the lower jaw are brought into vibration by the incoming wave. These vibrations are then transmitted directly into the inner ear by means of a chain of bones attached to the lower jaw. This process is comparable to the transmission of auditory signals by the ossicles in the human middle ear. The snake thus literally hears surface vibrations.

Mammals and birds can localize a sound source by comparing the arrival times of sounds that arrive at the right and left ear through air. For sound coming from the right, the right ear will respond a fraction of a second earlier than the left ear. For sound coming from the left, the situation is exactly the other way around. From this time-of-arrival difference, the brain computes the direction that the sound comes from.

Combining approaches from biomechanics and naval engineering with the modeling of neuronal circuits, Friedel and his colleagues have shown that the snake can use its ears to perform the same trick for sound arriving through sand. The left and right side of the lower jaw of a snake are not rigidly coupled. Rather, they are connected by flexible ligaments that enable the snake to stretch its mouth enormously to swallow large prey. Both sides of the jaw can thus move independently, just like two boats floating - so to speak - on a sea of sand, and in this way allow for stereo hearing.

A sand wave originating from the right will stimulate the right side of the lower jaw slightly earlier than the left side, and vice versa. Using a mathematical model, the scientists calculated the vibration response of the jaw to an incoming surface wave. They could show that the small difference in the arrival time of the wave at the right and the left ear is sufficient for the snake's brain to calculate the direction of the sound source.

The extraordinary flexibility of the lower jaw of snakes has evolved because being able to swallow very large meals is a big advantage if food is in short supply and competition fierce. Moreover, the separation of the sides of the lower jaw also allowed this very interesting form of hearing to develop.

Paul Friedel, Bruce A. Young, and J. Leo van Hemmen
Auditory localization of ground-borne vibrations in snakes
Physical Review Letters 100, 048701 (2008)
doi: 10.1103/PhysRevLett.100.048701
For more information, please contact one of the authors.
Paul Friedel
Physik Department T35, TU München
Garching bei München, Germany
pfriedel@ph.tum.de
+49 89 289 12193
Prof. J. Leo van Hemmen
Physik Department T35, TU München
Garching bei München, Germany
lvh@tum.de
+49 89 289 12362
Prof. Bruce A. Young
Department of Biology
Washburn University
Topeka, KS 66621, USA
bruce.young@washburn.edu
+1 785 670 2166

Katrin Weigmann | idw
Further information:
http://www.t35.ph.tum.de/
http://www.bernstein-zentren.de/

Further reports about: Sound Surface Vibration Wave

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>