Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snakes can Hear Stereo Sound from the Sand

30.01.2008
Biophysicists of the Technical Universtiy Munich and Bernstein Center for Computational Neuroscience publish in Physical Review Letters
It is often believed that snakes cannot hear. This presumption is fed by the fact that snakes lack an outer ear and that scientific evidence of snakes

Copyright 2002: R.D.L. Mastenbroek & Dexter Bressers

responding to sound is scarce. Snakes do, however, possess an inner ear with a functional cochlea.

In a recent article in Physical Review Letters* scientists from the Technical University Munich (TUM), Germany, and the Bernstein Center for Computational Neuroscience (BCCN) present evidence that snakes use this structure to detect minute vibrations of the sand surface that are caused by prey moving. Their ears are sensitive enough to not only "hear" the prey approaching, but also to allow the brain, i.e., the auditory system, to localize the direction it is coming from. The work was carried out by J. Leo van Hemmen and Paul Friedel, scientists at the Biophysics Department of the TUM and BCCN, together with their colleague Bruce Young from the Biology Department of Washburn University at Topeka (KS, USA).

... more about:
»Sound »Surface »Vibration »Wave

Any disturbance at a sandy surface leads to vibration waves that radiate away from the source along the surface. These waves behave just like ripples on the surface of a pond after a stone is dropped into the water. The sand waves, however, propagate much quicker (the speed is about 50 meters per second) than at the water surface but on the other hand much more slowly than for instance in stone (or concrete) and the amplitude of the waves may be as small as a couple of thousands of a millimeter. Yet a snake can detect these small ripples. If it rests its head on the ground, the two sides of the lower jaw are brought into vibration by the incoming wave. These vibrations are then transmitted directly into the inner ear by means of a chain of bones attached to the lower jaw. This process is comparable to the transmission of auditory signals by the ossicles in the human middle ear. The snake thus literally hears surface vibrations.

Mammals and birds can localize a sound source by comparing the arrival times of sounds that arrive at the right and left ear through air. For sound coming from the right, the right ear will respond a fraction of a second earlier than the left ear. For sound coming from the left, the situation is exactly the other way around. From this time-of-arrival difference, the brain computes the direction that the sound comes from.

Combining approaches from biomechanics and naval engineering with the modeling of neuronal circuits, Friedel and his colleagues have shown that the snake can use its ears to perform the same trick for sound arriving through sand. The left and right side of the lower jaw of a snake are not rigidly coupled. Rather, they are connected by flexible ligaments that enable the snake to stretch its mouth enormously to swallow large prey. Both sides of the jaw can thus move independently, just like two boats floating - so to speak - on a sea of sand, and in this way allow for stereo hearing.

A sand wave originating from the right will stimulate the right side of the lower jaw slightly earlier than the left side, and vice versa. Using a mathematical model, the scientists calculated the vibration response of the jaw to an incoming surface wave. They could show that the small difference in the arrival time of the wave at the right and the left ear is sufficient for the snake's brain to calculate the direction of the sound source.

The extraordinary flexibility of the lower jaw of snakes has evolved because being able to swallow very large meals is a big advantage if food is in short supply and competition fierce. Moreover, the separation of the sides of the lower jaw also allowed this very interesting form of hearing to develop.

Paul Friedel, Bruce A. Young, and J. Leo van Hemmen
Auditory localization of ground-borne vibrations in snakes
Physical Review Letters 100, 048701 (2008)
doi: 10.1103/PhysRevLett.100.048701
For more information, please contact one of the authors.
Paul Friedel
Physik Department T35, TU München
Garching bei München, Germany
pfriedel@ph.tum.de
+49 89 289 12193
Prof. J. Leo van Hemmen
Physik Department T35, TU München
Garching bei München, Germany
lvh@tum.de
+49 89 289 12362
Prof. Bruce A. Young
Department of Biology
Washburn University
Topeka, KS 66621, USA
bruce.young@washburn.edu
+1 785 670 2166

Katrin Weigmann | idw
Further information:
http://www.t35.ph.tum.de/
http://www.bernstein-zentren.de/

Further reports about: Sound Surface Vibration Wave

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>