Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The eyes have it: Researchers can now determine when a human was born by looking into the eyes of the dead

30.01.2008
Using the radiocarbon dating method and special proteins in the lens of the eye, researchers at the University of Copenhagen and Aarhus can now establish, with relatively high precision, when a person was born. This provides a useful tool for forensic scientists who can use it to establish the date of birth of an unidentified body and could also have further consequences for health science research. The findings are published in the online, open-access journal PLoS ONE on January 30.

The lens of the eye is made up of transparent proteins called crystallins. These are packed so tightly together and in such a particular way, that they behave like crystals, allowing light to pass through the lens of the eye so that we can see. From conception and up until a human being is 1-2 years of age, the cells in the lens build these crystalline proteins. Once this organic construction work is done, however, the lens crystallins remain essentially unchanged for the rest of our lives. This is a fact that researchers can now put to good use.

A minute quantity of Carbon (C-12) in the carbon-dioxide content of the atmosphere contains two extra neutrons and is therefore called Carbon-14 (C-14). This isotope is radioactive, but decays so slowly and harmlessly into nitrogen, that this small carbon element, which occurs quite naturally in nature, is in no way harmful to humans, plants or animals.

At the same time, carbon is one of the principal organic elements, and constantly moves in and out of the food chain. The same is true for the tiny quantity of C-14 in the atmosphere. As long as an organism is part of the food chain, the amount of C-14 in its cells will remain constant and stay at the same level as the C-14 atmospheric content. When the organism dies, however, the quantity of C-14 will slowly but surely drop over the course of thousands of years, while it transforms into nitrogen. This is they key to the Carbon 14 method known as radiocarbon dating, which scientists use to date up to 60, 000 year old biological, archaeological finds.

... more about:
»C-14 »CONTENT »Carbon »Nuclear »Tissue »atmosphere »crystallins »lens

From the end of World War II and up until about 1960, the superpowers of the Cold War era, conducted nuclear tests, detonating bombs into the atmosphere. These detonations have affected the content of radioactive trace materials in the air and created what scientists refer to as the C-14 bomb pulse. From the first nuclear detonation and, until the ban on nuclear testing was evoked, the quantity of C-14 in the atmosphere doubled. Since 1960, it has only slowly decreased to natural levels.

This sudden curve has left an impression in the food chain and therefore also in the lens crystallins of the eyes, which have absorbed the increased carbon content through food stuffs. Since the crystallins remain unchanged once they have been created, they reflect the content of C-14 present in the atmosphere at the time of their creation. An event occurring shortly after birth. Using a large nuclear accelerator, physicists at Aarhus University can now determine the amount of C-14 in as little as one milligram of lens tissue and thereby calculate the year of birth.

Associate Professor Niels Lynnerup from the Department of Forensic Sciences developed the forensic method, together with the Department of Eye Pathology and the Department of Physics and Astronomy at Arhus University, Denmark.

Professor Lynnerup explains that the technique can have several other applications: “As has been pointed out by other researchers, we think that the carbon dating of proteins and other molecules in the human body can also be used to study when certain kinds of tissue are generated and regenerated,” he explains. “This could, for example, be applied to cancer tissue and cancer cells. Calculating the amount of C-14 in these tissues could perhaps tell us when the cancerous tissues formed, and this could further the understanding of cancer.”

Citation: Lynnerup N, Kjeldsen H, Heegaard S, Jacobsen C, Heinemeier J (2008) Radiocarbon Dating of the Human Eye Lens Crystallines Reveal Proteins without Carbon Turnover throughout Life. PLoS ONE 3(1): e1529. doi:10.1371/journal.pone.0001529

Andrew Hyde | alfa
Further information:
http://www.plosone.org/doi/pone.0001529

Further reports about: C-14 CONTENT Carbon Nuclear Tissue atmosphere crystallins lens

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>