Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Naked mole-rats bear chili pepper heat

29.01.2008
Pity the tiny naked mole-rat. The buck-toothed, sausage-like rodent lives by the hundreds in packed, oxygen-starved burrows some six feet under ground. It is even cold-blooded -- which, as far as we know, is unique among mammals.

You can feel their pain. But, they can't feel ours.

Evolution has benefited naked mole-rats by ridding them of a body chemical called Substance P, a neurotransmitter released by pain fibers that send signals to the central nervous system in mammals after making contact with things that cause long-lasting, achy pain.

A better understanding of how Substance P works in the strange rodents may lead to new analgesic drugs for people with chronic pain who do not respond well to current medication, according to Thomas Park, associate professor of biological sciences at the University of Illinois at Chicago, and Gary Lewin of the Max-Delbrück Center for Molecular Medicine in Berlin, principal authors of a study appearing Jan. 29 in the free-access journal PLoS Biology.

... more about:
»Capsaicin »Substance »acid »naked »respond »rodent

Park, Lewin and their laboratory teams in Chicago and Berlin used a modified herpes cold sore virus to carry genes for Substance P to the rodents' nerve fibers.

"We were able to rescue their ability to feel pain," said Park. His research group restored Substance P and the naked mole-rats' ability to sense the burning sensation other mammals feel when subjected to capsaicin, the active ingredient in chili peppers.

The restored sensitivity was limited to just one rear foot of each tested rodent. "They'd pull their foot back and lick it," in response to the stimulus, said Park. Other feet were impervious to the sting of capsaicin.

"Capsaicin is very specific for exciting the fibers that normally have Substance P," said Park. "They're not the fibers that respond to a pin prick or pinch, but the ones that respond after an injury or burn and produce longer-lasting pain."

But the researchers found that mole-rats remained completely insensitive to acids, indicating a fundamental difference in how their nerves respond to this stimulus.

"Acid acts on the capsaicin receptor and on another family of receptors called acid-sensitive ion channels," Park said. "Acid is not as specific as capsaicin. The mole-rat is the only animal that shows completely no response to acid."

Park said the research adds to knowledge about the neurotransmitter Substance P.

"This is important specifically to the long-term, secondary-order inflammatory pain. It's the pain that can last for hours or days when you pull a muscle or have a surgical procedure," he said.

Park said naked mole-rats provide a new model system that is different from all other animals he has studied.

"We're learning which nerve fibers are important for which kinds of pain, so we'll be able to develop new strategies and targets."

Naked mole-rats, native to east-central Africa, developed a protective reaction to acids through evolution. Living in tight underground quarters, the mole-rats exhale high levels of carbon dioxide, which becomes acid when it touches skin and mucous tissue in the nose, eyes and mouth. But the mole-rats have evolved to become desensitized to the stinging pain of acid.

The UIC biologist plans to study other animals, both closely related and unrelated -- such as Alaskan marmots that burrow in high CO2 environments -- to examine how they have evolved similar strategies to cope with acid-rich living conditions.

Paul Francuch | EurekAlert!
Further information:
http://www.uic.edu

Further reports about: Capsaicin Substance acid naked respond rodent

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>