Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein that controls hair growth also keeps stem cells slumbering

28.01.2008
A drug's unsightly side effect leads to a new understanding of how stem cells maintain their potency

Like fine china and crystal, which tend to be used sparingly, stem cells divide infrequently. It was thought they did so to protect themselves from unnecessary wear and tear. But now new research from Rockefeller University has unveiled the protein that puts the brakes on stem cell division and shows that stem cells may not need such guarded protection to maintain their potency.

This research, to be published in the January 25 issue of Cell, raises questions about what stem cells need in order to maintain their ability to regenerate tissue. It may also be key in developing new treatments for thinning hair.

The impetus for the work began five years ago when Elaine Fuchs, head of the Laboratory of Mammalian Cell Biology and Development, and several researchers in her lab discovered that the protein NFATc1 was one of only a few that are highly expressed within the stem cell compartment of the hair follicle. Clinical research, meanwhile, showed that a particular immunosuppressant that inhibits NFATc1, a drug called cyclosporine A, has a rather unsightly side effect: excessive hair growth.

... more about:
»Horsley »NFATc1 »Stem »cyclosporine »stem cells

Fuchs and Valerie Horsley, a postdoc in her lab, realized that there was a connection between the drug's side effect and the abundance of NFATc1 within the hair follicle's stem cell compartment -- the bulge. The mice they treated with the drug grew fur at a much faster rate than mice they did not treat. The researchers then showed that this excessive hair growth was due to increased stem cell activity within the bulge, a process that cranked up the production of hair. Specifically, the hair cycle shifted gears from its resting phase, when stem cells slumber, to its growth phase, when stem cells proliferate.

To maintain their multipotent properties, though, it appears that these stem cells hardly needed much "rest" at all. These findings came as a surprise to the researchers, who, like their colleagues, had believed that stem cells proliferating infrequently protected them from depletion or mutations that would lead to hair loss. "It seems like the resting phase isn't as necessary as was once thought," says Horsley. "Even though these stem cells are highly proliferative, they still maintain their stem cell character."

Using genetically engineered mice bred by colleagues at Harvard Medical School, Horsley and Fuchs then further explored what happens when skin stem cells lack NFATc1. They found that these mice looked exactly like the hairy mice that were treated with cyclosporine A: The loss of NFATc1 didn't stop the hair cycle, but rather shortened the resting phase and prompted precocious entry to the growth state.

In probing the underlying mechanisms mediating this process, Horsley and Fuchs discovered that NFATc1, a transcription factor, blocks the expression of a gene that provides the cell cycle with "go ahead" signals at certain checkpoints. By blocking these signals, NFATc1 prevents the stem cells from dividing, preventing unnecessary wear and tear. These same cells, if treated with cyclosporine A, show a rapid loss of the transcription factor, an effect that turns the light green at these checkpoints.

For those with thinning hair, this research may hold promise. As people age, the resting phase of the hair cycle gets longer and longer such that the stem cells proliferate less frequently and hair does not grow at the rate it once did. "If we could use a local and more specific inhibitor of NFATc1 than cyclosporine A to stimulate these stem cells, which are just sitting there during an extended resting phase, we might be able to promote new hair growth," says Fuchs, who is Rebecca C. Lancefield Professor at Rockefeller and an investigator at the Howard Hughes Medical Institute. "In a sense, by blocking NFATc1 activity in our older mice, their hair follicles were brought back to what appeared to be a more youthful state."

So far, these proliferating stem cells lacking NFATc1 have not led to increased tumor formation, which is often a dangerous byproduct of triggering stem cells into action. "This is the first case where we have been able to activate the hair cycle without accompanying signs of tumorigenesis," says Fuchs. "If we can control the activation process of follicle stem cells without promoting tumorigenesis, then this would be a big move in the right direction."

Thania Benios | EurekAlert!
Further information:
http://www.rockefeller.edu

Further reports about: Horsley NFATc1 Stem cyclosporine stem cells

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>