Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Search for the 'on' switches may reveal genetic role in development and disease

28.01.2008
A new resource that identifies regions of the human genome that regulate gene expression may help scientists learn about and develop treatments for a number of human diseases, according to researchers at Duke’s Institute for Genome Sciences & Policy (IGSP).

“The majority of DNA in our bodies is packaged, or tightly structured,” said Gregory Crawford, Ph.D., a researcher in the IGSP and one of the senior investigators on this study. “Our goal was to identify the areas of DNA across the entire genome that are not packaged, because we know those are the regions that are important in regulating gene activity.”

The researchers published their findings in the January 25, 2008 issue of the journal Cell. The study was funded by the Duke IGSP and the National Human Genome Research Institute.

They combined two known processes to look at regulatory regions across the whole human genome, Crawford said.

... more about:
»DNA »Genome »IGSP »method

“We used an enzyme called DNase that has been known for decades to preferentially identify unpackaged regions of DNA,” he said. “In this study, we identified all unpackaged regions within the entire genome using two extremely efficient methodologies: microarrays and sequencing.”

Microarrays are glass slides on which scientists can simultaneously look at millions of short pieces of DNA. New sequencing technologies are able to determine the genetic code of millions of DNA fragments. Together, these tools generated guides to understanding the location of the unpackaged regions, and the researchers compared the results found using each method and found high levels of agreement.

By combining the two methods, the researchers were able to scan the entire genome efficiently.

“Scientists have used similar methods to look at tiny portions of the genome in the past, but ours is the first technology to really allow researchers to look at the whole genome, so we can see all of the areas where gene regulation occurs,” said Terrence Furey, Ph.D., a researcher in the IGSP and co-senior investigator on this study. “Identifying these sites may help us understand the biological basis for gene regulation expression patterns in different cell types. We'll also compare patterns within and across species, in response to external stimuli and in diseased tissues.”

The researchers said they looked at normal cells for this study because in order to understand anything about disease or the aging processes, it's important to first understand what a normal cell looks like.

“Perhaps in the future, this data resource could help researchers learn to turn a harmful gene off or increase the expression of helpful ones,” Furey said.

Lauren Shaftel Williams | EurekAlert!
Further information:
http://www.duke.edu

Further reports about: DNA Genome IGSP method

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>