Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Search for the 'on' switches may reveal genetic role in development and disease

28.01.2008
A new resource that identifies regions of the human genome that regulate gene expression may help scientists learn about and develop treatments for a number of human diseases, according to researchers at Duke’s Institute for Genome Sciences & Policy (IGSP).

“The majority of DNA in our bodies is packaged, or tightly structured,” said Gregory Crawford, Ph.D., a researcher in the IGSP and one of the senior investigators on this study. “Our goal was to identify the areas of DNA across the entire genome that are not packaged, because we know those are the regions that are important in regulating gene activity.”

The researchers published their findings in the January 25, 2008 issue of the journal Cell. The study was funded by the Duke IGSP and the National Human Genome Research Institute.

They combined two known processes to look at regulatory regions across the whole human genome, Crawford said.

... more about:
»DNA »Genome »IGSP »method

“We used an enzyme called DNase that has been known for decades to preferentially identify unpackaged regions of DNA,” he said. “In this study, we identified all unpackaged regions within the entire genome using two extremely efficient methodologies: microarrays and sequencing.”

Microarrays are glass slides on which scientists can simultaneously look at millions of short pieces of DNA. New sequencing technologies are able to determine the genetic code of millions of DNA fragments. Together, these tools generated guides to understanding the location of the unpackaged regions, and the researchers compared the results found using each method and found high levels of agreement.

By combining the two methods, the researchers were able to scan the entire genome efficiently.

“Scientists have used similar methods to look at tiny portions of the genome in the past, but ours is the first technology to really allow researchers to look at the whole genome, so we can see all of the areas where gene regulation occurs,” said Terrence Furey, Ph.D., a researcher in the IGSP and co-senior investigator on this study. “Identifying these sites may help us understand the biological basis for gene regulation expression patterns in different cell types. We'll also compare patterns within and across species, in response to external stimuli and in diseased tissues.”

The researchers said they looked at normal cells for this study because in order to understand anything about disease or the aging processes, it's important to first understand what a normal cell looks like.

“Perhaps in the future, this data resource could help researchers learn to turn a harmful gene off or increase the expression of helpful ones,” Furey said.

Lauren Shaftel Williams | EurekAlert!
Further information:
http://www.duke.edu

Further reports about: DNA Genome IGSP method

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>