Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolutionary 'battle scars' identify enhanced anti-viral activity

28.01.2008
Rapid evolution of a protein produced by an immunity gene is associated with increased antiviral activity in humans, a finding that suggests evolutionary biology and virology together can accelerate the discovery of viral-defense mechanisms, according to researchers at Fred Hutchinson Cancer Research Center.

These findings by Julie Kerns, Ph.D., a postdoctoral researcher in the Hutchinson Center’s Basic Sciences Division, published Jan. 25 in the open-access journal PLoS Genetics, present a striking example by which evolutionary studies can directly lead to biomedically important discoveries in the field of infectious diseases.

The immunity gene, called ZAP, is a key player in a newly discovered branch of antiviral defenses in mammals referred to as ‘‘intrinsic immunity.’’ Host proteins like ZAP can target intracellular stages of the viral life cycle to inhibit viral activity. The ZAP gene, first discovered in rats, thwarts a variety of divergent viruses, from retroviruses (like HIV) to alphaviruses (like Sindbis) to filoviruses (like Ebola).

Researchers believe ZAP functions by virtue of its RNA-binding abilities, which recognize specific sequences of the virus and target their viral RNA for destruction. Host-virus interactions are a classic example of genetic conflict in which both entities try to gain an evolutionary advantage over the other. This ‘‘back-and-forth’’ evolution is predicted to result in rapid changes of both host and viral proteins, which results in an evolutionary signature of positive selection, especially at the direct interaction interface.

“This suggests that we might be able to deduce host-virus conflicts purely by looking at rapidly evolving protein segments,” said Kerns, the lead author of the study, which was conducted in collaboration with senior author Harmit Singh Malik, Ph.D., of the Center’s Basic Sciences Division and co-author Michael Emerman, Ph.D., of the Center’s Human Biology Division.

The researchers found that there has been very little sequence evolution in the RNA-binding domain, which suggests that human ZAP may be similar to the rat gene in its viral RNA-binding specificity. However, surprisingly, the rapid evolution characteristic of “intrinsic immunity” genes was concentrated in a protein domain that was not even present in the originally discovered rat gene.

The authors found that humans encode two protein versions, or isoforms, from a single ZAP gene: a shorter version similar to the original rat gene and a longer version that possesses a rapidly evolving poly (ADP-ribose) polymerase (PARP)-like domain. In virological assays, the longer human ZAP protein isoform has higher antiviral activity. Thus, positive selection correctly predicted the more potent antiviral isoform of this protein.

The authors further suggest that ZAP is locked in a conflict with alphaviruses. The discovery of a potential human gene that can restrict alphaviral infection is particularly timely as the mosquito-borne alphavirus, Chikungunya, was responsible for a large epidemic in parts of Southeast Asia in 2006 and is now threatening to invade parts of Europe. The researchers believe this finding has important implications for the understanding of intrinsic immunity against viruses, and could potentially serve as a guide in the development of antiviral therapeutics.

“We think that a particular alphaviral protein may be playing an evolutionary ‘cat-and-mouse’ game with the ZAP gene,” Malik said. “Identifying this protein could lead to novel ways to tackle diseases caused by alphaviruses.”

Kristen Woodward | EurekAlert!
Further information:
http://www.fhcrc.org

Further reports about: Evolution Evolutionary Viral ZAP alphavirus antiviral immunity

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>