Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quality control mechanism tags defective sperm cells inside the body

28.01.2008
Defective sperm cells do not pass through the body unnoticed. A new University of Missouri study provides evidence that the body recognizes and tags defective sperm cells while they undergo maturation in the epididymis, a sperm storage gland attached to the testis. According to researchers, only the best sperm that have the highest chance of succeeding in fertilization will survive the production process without a “tag.”

A small protein called ubiquitin marks abnormal sperm cells, including cells that have two heads, two tails or are otherwise misshaped. This “recycling tag” on the sperm cell tells the body which cells need to be broken back down into amino acids. This provides evidence that there is an active removal process or marking of defective sperm during the epididymal passage.

“Fertilization is, in a way, a numbers game,” said Peter Sutovsky, associate professor of animal sciences, clinical obstetrics and gynecology in the MU College of Agriculture, Food and Natural Resources. “You need a certain number of normal sperm cells to reach the egg. If too many are tagged with ubiquitin, there may be not enough to fertilize an egg.”

This study suggests that the male reproductive system must be able to evaluate and control the quality of the sperm to insure an optimal chance of fertilization. High levels of ubiquitin in the sperm can indicate low-sperm count or infertility. This process of quality control has been found in both humans and other mammals including bulls, boars and rats.

... more about:
»Control »Ubiquitin »defective »sperm

“In many cases, the cells that are tagged with ubiquitin are obviously abnormal with two tails or two heads, but many of them look like they don’t have defects,” Sutovsky said. “Oftentimes, these cells may look normal but lack proteins that are important to fertility.”

Once sperm cells are tagged as defective, it is unlikely that the process can be reversed. Sutovsky stresses the importance of a healthy lifestyle to reduce the likelihood of abnormal sperm cells. He suggests avoiding exposure to toxic chemicals, abstaining from smoking and maintaining a healthy diet. He suggests people who work with toxins on a daily basis should minimize their exposure by wearing protective clothing and respirators.

Jennifer Faddis | EurekAlert!
Further information:
http://www.missouri.edu

Further reports about: Control Ubiquitin defective sperm

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>