Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists Create Wiring Diagram Of Cell Division

28.01.2008
Researchers at Virginia Tech have created a mathematical model of the process that regulates cell division in a common bacterium.

The study, published January 25 in the open access journal PLoS Computational Biology, looks at the molecular machinery that governs replication of DNA and cell division in Caulobacter crescentus, an easily studied bacterium that is closely related to the bacteria that fix nitrogen in legumes and to the bacteria that cause brucellosis in cattle and Rocky Mountain spotted fever in humans.

“All share the same characteristic of asymmetric division; the daughter cells are different than the mother cell in some fashion,” explains co-author John Tyson. “In C. crescentus, the mother cell attaches to a rock by a sticky stalk. If there is good eating, she divides and creates a daughter that can swim away. The stalked cell remains attached to the rock and the daughter—with a flagellum instead of a stalk—swims away, so that it does not compete with mama. After about 35 to 40 minutes, the daughter loses the flagellum, grows a stalk, and settles down to become a mother.”

The researchers are interested in the molecular machinery that governs replication of DNA and division of a cell into two different cell types. “A lot is known about genes that control this process,” said Tyson. “The mechanism is very complicated, involving dozens of genes and even more proteins. From experimental observations it is possible to construct a hypothetical ‘wiring diagram’ of how these genes and proteins interact.”

... more about:
»Division »Model »govern

But it is difficult to predict how cells will control their replication-division cycles from such a complicated hypothesis, he said. They have converted the wiring diagram into “mathematical equations that can be solved on a computer so that we can say with more confidence how the mechanism will govern cell growth, division, and differentiation.”

For example, models can be used to make testable predictions. A basic experiment is to create a mutant bacterium by knocking out a gene – thus learning the role of the gene. This mutation can be simulated in the mathematical model to confirm the role of the gene in the wiring diagram.

CITATION: Li S, Brazhnik P, Sobral B, Tyson JJ (2008) A quantitative study of the division cycle of Caulobacter crescentus stalked cells. PLoS Comput Biol 4(1): e9. doi:10.1371/journal.pcbi.0040009

Andrew Hyde | alfa
Further information:
http://www.ploscompbiol.org
http://compbiol.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pcbi.0040009

Further reports about: Division Model govern

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>