Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists Create Wiring Diagram Of Cell Division

28.01.2008
Researchers at Virginia Tech have created a mathematical model of the process that regulates cell division in a common bacterium.

The study, published January 25 in the open access journal PLoS Computational Biology, looks at the molecular machinery that governs replication of DNA and cell division in Caulobacter crescentus, an easily studied bacterium that is closely related to the bacteria that fix nitrogen in legumes and to the bacteria that cause brucellosis in cattle and Rocky Mountain spotted fever in humans.

“All share the same characteristic of asymmetric division; the daughter cells are different than the mother cell in some fashion,” explains co-author John Tyson. “In C. crescentus, the mother cell attaches to a rock by a sticky stalk. If there is good eating, she divides and creates a daughter that can swim away. The stalked cell remains attached to the rock and the daughter—with a flagellum instead of a stalk—swims away, so that it does not compete with mama. After about 35 to 40 minutes, the daughter loses the flagellum, grows a stalk, and settles down to become a mother.”

The researchers are interested in the molecular machinery that governs replication of DNA and division of a cell into two different cell types. “A lot is known about genes that control this process,” said Tyson. “The mechanism is very complicated, involving dozens of genes and even more proteins. From experimental observations it is possible to construct a hypothetical ‘wiring diagram’ of how these genes and proteins interact.”

... more about:
»Division »Model »govern

But it is difficult to predict how cells will control their replication-division cycles from such a complicated hypothesis, he said. They have converted the wiring diagram into “mathematical equations that can be solved on a computer so that we can say with more confidence how the mechanism will govern cell growth, division, and differentiation.”

For example, models can be used to make testable predictions. A basic experiment is to create a mutant bacterium by knocking out a gene – thus learning the role of the gene. This mutation can be simulated in the mathematical model to confirm the role of the gene in the wiring diagram.

CITATION: Li S, Brazhnik P, Sobral B, Tyson JJ (2008) A quantitative study of the division cycle of Caulobacter crescentus stalked cells. PLoS Comput Biol 4(1): e9. doi:10.1371/journal.pcbi.0040009

Andrew Hyde | alfa
Further information:
http://www.ploscompbiol.org
http://compbiol.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pcbi.0040009

Further reports about: Division Model govern

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>