Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists Create Wiring Diagram Of Cell Division

28.01.2008
Researchers at Virginia Tech have created a mathematical model of the process that regulates cell division in a common bacterium.

The study, published January 25 in the open access journal PLoS Computational Biology, looks at the molecular machinery that governs replication of DNA and cell division in Caulobacter crescentus, an easily studied bacterium that is closely related to the bacteria that fix nitrogen in legumes and to the bacteria that cause brucellosis in cattle and Rocky Mountain spotted fever in humans.

“All share the same characteristic of asymmetric division; the daughter cells are different than the mother cell in some fashion,” explains co-author John Tyson. “In C. crescentus, the mother cell attaches to a rock by a sticky stalk. If there is good eating, she divides and creates a daughter that can swim away. The stalked cell remains attached to the rock and the daughter—with a flagellum instead of a stalk—swims away, so that it does not compete with mama. After about 35 to 40 minutes, the daughter loses the flagellum, grows a stalk, and settles down to become a mother.”

The researchers are interested in the molecular machinery that governs replication of DNA and division of a cell into two different cell types. “A lot is known about genes that control this process,” said Tyson. “The mechanism is very complicated, involving dozens of genes and even more proteins. From experimental observations it is possible to construct a hypothetical ‘wiring diagram’ of how these genes and proteins interact.”

... more about:
»Division »Model »govern

But it is difficult to predict how cells will control their replication-division cycles from such a complicated hypothesis, he said. They have converted the wiring diagram into “mathematical equations that can be solved on a computer so that we can say with more confidence how the mechanism will govern cell growth, division, and differentiation.”

For example, models can be used to make testable predictions. A basic experiment is to create a mutant bacterium by knocking out a gene – thus learning the role of the gene. This mutation can be simulated in the mathematical model to confirm the role of the gene in the wiring diagram.

CITATION: Li S, Brazhnik P, Sobral B, Tyson JJ (2008) A quantitative study of the division cycle of Caulobacter crescentus stalked cells. PLoS Comput Biol 4(1): e9. doi:10.1371/journal.pcbi.0040009

Andrew Hyde | alfa
Further information:
http://www.ploscompbiol.org
http://compbiol.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pcbi.0040009

Further reports about: Division Model govern

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>