Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique fungal collection could hold key to future antibiotics

23.01.2008
Scientists at Royal Holloway, University of London have joined forces with CABI to establish a facility to screen for potential new antibiotics. Royal Holloway and CABI both bring a combination of individual scientific skills, expertise and resources to the project. When brought together, these offer the opportunity to build a highly focused natural products drug discovery operation that will address the urgent need for bringing new antibiotic compounds to market.

Since their discovery, antibiotics and other antimicrobial agents have saved millions of lives and significantly eased patients’ suffering. However, over time, micro-organisms have developed resistance to existing antibiotics making infections difficult, if not impossible, to treat. The recent appearance of multiple-resistant bacterial infections has radically increased the necessity for new antibiotic discovery.

As part of a three-year programme, the joint research facility will utilise CABI’s unique collection of fungi gathered from all parts of the world, to screen for potential new antibiotics. Although the first natural product antibiotic to be used clinically, penicillin, was isolated from a fungus, these organisms have not been as extensively evaluated as bacteria as sources of new drugs for treating infections and so there is great potential for discovery in CABI’s 28,000 organism collection.

Furthermore, over the past 25 years companies have concentrated on using chemistry-based approaches to modify recognised antibiotic structures. However, the use of natural products, from fungi, which have evolved from millions of years of competition against bacteria is likely to lead to products with new modes of antibiotic action that disease-causing bacteria cannot counter. This new joint facility aims to harness these natural chemical compounds from fungi to offer potential new antibiotics. Similarly, compounds that have proven health benefits when taken in the diet (so-called nutraceuticals) are also likely to be found in fungi and the new joint research facility will also screen the collection for new nutraceuticals.

Professor Peter Bramley and Dr Paul Fraser in the School of Biological Sciences at Royal Holloway and Dr Trevor Nicholls, CEO and Dr Joan Kelley Executive Director of CABI are managing the project. Professor Bramley and Dr Fraser’s extensive experience in molecular biology and analytical methodologies will be applied to state-of-the-art screening techniques for the discovery of new compounds and the manipulation, recombination and expression of their biosynthetic pathways to bioengineer new, related compounds. Dr Nicholls’ experience in the biotechnology industry and Dr Kelley’s expertise and knowledge of mycology and biodiversity will direct the research to identify strains which are likely to be more biochemically diverse and commercially valuable for screening.

Professor Bramley commented, “This joint initiative lays the foundations for a long term collaboration with potential strategic benefits, both research and commercial. A major focus will be the search for new antibiotics and nutraceuticals, for which there is now increasing commercial, nutritional and medical demand.”

Dr Trevor Nicholls, CEO CABI added, “This is a really exciting partnership and we are looking forward to working with the expertise of the scientists at Royal Holloway. We are hopeful that our collaboration will prove the winning formula for discovering new drugs to fight cancers, diseases and resistant strains of infections such as MRSA.”

The joint facility is located in the Royal Holloway’s School of Biosciences and houses a new state-of-the-art mass spectrometer. As part of this collaboration, two technicians will be employed and a PhD studentship funded.

Royal Holloway has also obtained early stage seed fund investment from the London Development Agency backed WestFocus PARK Fund, to commercialise any potential new discoveries emerging from this project. The project team will work closely with the Research & Enterprise department at Royal Holloway to protect, manage and exploit any new intellectual property.

Lynsey Sterrey | alfa
Further information:
http://www.cabi.org
http://www.cabi.org//datapage.asp?iDocID=1010

Further reports about: Holloway antibiotic collection compounds fungi infections

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>