Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique fungal collection could hold key to future antibiotics

23.01.2008
Scientists at Royal Holloway, University of London have joined forces with CABI to establish a facility to screen for potential new antibiotics. Royal Holloway and CABI both bring a combination of individual scientific skills, expertise and resources to the project. When brought together, these offer the opportunity to build a highly focused natural products drug discovery operation that will address the urgent need for bringing new antibiotic compounds to market.

Since their discovery, antibiotics and other antimicrobial agents have saved millions of lives and significantly eased patients’ suffering. However, over time, micro-organisms have developed resistance to existing antibiotics making infections difficult, if not impossible, to treat. The recent appearance of multiple-resistant bacterial infections has radically increased the necessity for new antibiotic discovery.

As part of a three-year programme, the joint research facility will utilise CABI’s unique collection of fungi gathered from all parts of the world, to screen for potential new antibiotics. Although the first natural product antibiotic to be used clinically, penicillin, was isolated from a fungus, these organisms have not been as extensively evaluated as bacteria as sources of new drugs for treating infections and so there is great potential for discovery in CABI’s 28,000 organism collection.

Furthermore, over the past 25 years companies have concentrated on using chemistry-based approaches to modify recognised antibiotic structures. However, the use of natural products, from fungi, which have evolved from millions of years of competition against bacteria is likely to lead to products with new modes of antibiotic action that disease-causing bacteria cannot counter. This new joint facility aims to harness these natural chemical compounds from fungi to offer potential new antibiotics. Similarly, compounds that have proven health benefits when taken in the diet (so-called nutraceuticals) are also likely to be found in fungi and the new joint research facility will also screen the collection for new nutraceuticals.

Professor Peter Bramley and Dr Paul Fraser in the School of Biological Sciences at Royal Holloway and Dr Trevor Nicholls, CEO and Dr Joan Kelley Executive Director of CABI are managing the project. Professor Bramley and Dr Fraser’s extensive experience in molecular biology and analytical methodologies will be applied to state-of-the-art screening techniques for the discovery of new compounds and the manipulation, recombination and expression of their biosynthetic pathways to bioengineer new, related compounds. Dr Nicholls’ experience in the biotechnology industry and Dr Kelley’s expertise and knowledge of mycology and biodiversity will direct the research to identify strains which are likely to be more biochemically diverse and commercially valuable for screening.

Professor Bramley commented, “This joint initiative lays the foundations for a long term collaboration with potential strategic benefits, both research and commercial. A major focus will be the search for new antibiotics and nutraceuticals, for which there is now increasing commercial, nutritional and medical demand.”

Dr Trevor Nicholls, CEO CABI added, “This is a really exciting partnership and we are looking forward to working with the expertise of the scientists at Royal Holloway. We are hopeful that our collaboration will prove the winning formula for discovering new drugs to fight cancers, diseases and resistant strains of infections such as MRSA.”

The joint facility is located in the Royal Holloway’s School of Biosciences and houses a new state-of-the-art mass spectrometer. As part of this collaboration, two technicians will be employed and a PhD studentship funded.

Royal Holloway has also obtained early stage seed fund investment from the London Development Agency backed WestFocus PARK Fund, to commercialise any potential new discoveries emerging from this project. The project team will work closely with the Research & Enterprise department at Royal Holloway to protect, manage and exploit any new intellectual property.

Lynsey Sterrey | alfa
Further information:
http://www.cabi.org
http://www.cabi.org//datapage.asp?iDocID=1010

Further reports about: Holloway antibiotic collection compounds fungi infections

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>