Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA variations signal lupus risk

22.01.2008
9 variants helped to identify those who had up to twice the risk of getting lupus

Scientists have pinpointed a set of common variations in human DNA that signal a higher risk for lupus in women who carry them. Some of these variations are more common in relatives of lupus patients, which may help future studies examining whether lupus is more prevalent among certain racial and ethnic groups, according to a new study.

Also, the findings point to various drug targets important to the search for cutting-edge lupus treatments, according to an international consortium of genetics researchers that includes scientists at the University of Alabama at Birmingham (UAB).

“Building on this finding we hope to identify those at highest risk of lupus, diagnose the disease earlier and hopefully find a cure,” said Robert Kimberly, M.D., a professor of medicine in the UAB Division of Clinical Immunology and Rheumatology and co-author on the new study.

... more about:
»DNA »Lupus »UAB »variations

The findings are published in the journal Nature Genetics.

The study, the largest of its kind to date, is the work of the International Consortium for Systemic Lupus Erythematosus (SLEGEN), of which UAB is a member. SLE is the medical term for systemic lupus erythematosus, a common form of the disease.

Looking at the genomes of 6,728 people, the researchers found the variations located on various chromosomes in women of European ancestry. The variations may be linked to as many as 67 percent of all lupus cases in women, the study authors write.

“These findings underscore that numerous genes, which are often immune-function related, contribute to the risk of developing lupus,” said Carl D. Langefeld, Ph.D., of Wake Forest University School of Medicine in Winston-Salem, N.C., the senior author on the SLEGEN study.

The Lupus Foundation of America estimates 1.5 million to 2 million Americans have a form of lupus, but the actual number may be higher. More than 90 percent of people with lupus are women and lupus rates are higher in African-American, Latino, Asian and Native American women than in women of other races and ethnicities.

Systemic lupus is a chronic inflammatory disease that can involve many organs, and often strikes the joints, kidneys, heart, lungs brain and the blood. The interaction of genetic variants and environmental factors are thought to contribute lupus susceptibility and severity, so the variants are a diagnostic tool and not a confirmation of disease.

While there is no cure for lupus, early diagnosis and proper medical treatment can significantly reduce inflammation, pain and stop future complications.

In the Nature Genetics study, the nine DNA variants helped to identify those who had up to twice the risk of getting lupus compared to those who did not have the variants, the study authors said.

“In addition to the drug targets, this study will help in the understanding of the causes of lupus and in the development of new genetic tests to find those most at risk for the disease,” said Jeffrey Edberg, Ph.D., an associate professor of medicine in the UAB Division of Clinical Immunology and Rheumatology and co-author on the study.

Using the data from the study, UAB researchers and their SLEGEN collaborators are developing further studies to determine if the same gene variants signal higher lupus risks in certain ethnic or racial groups. Also, the scientists are examining how these genetic pathways contribute to developing lupus.

The UAB research team included scientists from the departments of Medicine, Epidemiology and Biostatistics. The consortium includes investigators from the Oklahoma Medical Research Foundation in Oklahoma City, Wake Forest University, the University of Minnesota in Minneapolis, the University of California at San Francisco, the University of California at Los Angeles, the University of Southern California in Los Angeles, the Imperial College London and the University of Uppsala in Sweden.

Funding for the study came from the Alliance for Lupus Research, the National Institute of Arthritis, Musculoskeletal and Skin Diseases and the National Institute of Allergy and Infectious Diseases.

“We are hopeful this information will lead to new and better treatment possibilities and, eventually, a cure for lupus,” said Barbara Boyts, president of the Alliance for Lupus Research.

Troy Goodman | EurekAlert!
Further information:
http://www.uab.edu

Further reports about: DNA Lupus UAB variations

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>