Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson scientists uncover role of cancer stem cell marker: controlling gene expression

22.01.2008
Scientists at Jefferson’s Kimmel Cancer Center in Philadelphia have made an extraordinary advance in the understanding of the function of a gene previously shown to be part of an 11-gene “signature” that can predict which tumors will be aggressive and likely to spread. The gene, USP22, encodes an enzyme that appears to be crucial for controlling large scale changes in gene expression, one of the hallmarks of cancer cells.

As a result, USP22 immediately becomes a potential target for new anti-cancer drugs, says Steven McMahon, Ph.D., associate professor of Cancer Biology at Jefferson Medical College of Thomas Jefferson University, who led the work. And it solves a bit of a biological mystery.

Researchers knew that the gene USP22 was part of a group of 11 genes that are overexpressed in a variety of cancers and that overexpression of USP22 predicts which tumors can go on to spread elsewhere in the body. This group of genes is collectively called the “cancer stem cell signature.”

“Such cancers that have those properties – going on to be metastatic and resistant to therapy – are referred to as having cancer stem cell-like features,” Dr. McMahon explains. “The genes in the signature are in a family of genes implicated as cancer stem cell markers. Many of them code for critical components of signaling pathways that are altered in cancer, making proteins that play roles in tumor growth.” But unlike the other genes in the stem cell signature, the exact function of USP22 was not known.

... more about:
»Expression »McMahon »Myc »Signature »Stem »USP22

Reporting January 18, 2008 in the journal Molecular Cell, Dr. McMahon and his co- workers have shown that not only is USP22 overexpressed in cancer cells, its enzymatic activity is necessary for some of the global changes in gene expression patterns that occur in these cells.

In one example, they looked at the relationship between MYC and USP22. MYC, which is among the most commonly overexpressed genes in cancer, encodes a protein that controls the expression of thousands of other genes. The scientists showed that USP22 is a critical partner of MYC and that by depleting cells of USP22, they could prevent MYC from working properly, stopping it from inducing the invasive growth of cancer cells.

“We’ve shown that the MYC pathway is among the transcriptional programs that require USP22,” Dr. McMahon says. “Identifying USP22 as a global transcription regulator helps explain why it is part of this aggressive stem cell signature.”

Dr. McMahon and his group determined how USP22 works at the biochemical level and found that it is part of a large complex of proteins called human SAGA. According to Dr. McMahon, these proteins are responsible for turning on genes, helping them get expressed more efficiently. This suggests that the genes that are turned on by the USP22 complex are important for altering cancerous cells in such ways that they become more aggressive and metastatic.

“Discovering the identity of the 11-gene signature that predicts aggressive, therapy- resistant tumors a few years ago was certainly a critical advance in terms of the ability to diagnose and stratify patients,” Dr. McMahon says. “Since USP22 is an enzyme, the type of protein that is easiest to target with drugs, our new findings may help extend these earlier discoveries to the point where therapeutics can be developed. There are already drugs being used in cancer patients that attack other enzymes in this pathway, and there are companies interested in extending this to find USP22 inhibitors.”

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

Further reports about: Expression McMahon Myc Signature Stem USP22

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>