Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evidence found for genes that affect risk of developing Alzheimer's disease

21.01.2008
Through one of the largest studies yet of Alzheimer's disease (AD) patients and their brothers, sisters, and children, researchers at Mayo Clinic Jacksonville have found strong evidence that genes other than the well-known susceptibility risk factor APOE4 influence who is at risk for developing the neurodegenerative disease later in life.

Studying 25 multigenerational families of individuals diagnosed with late onset Alzheimer's disease (LOAD), the most common form of the disorder, as well as hundreds of other participants, the research team found that blood levels of amyloid beta (Aß) proteins associated with AD were significantly elevated compared to protein found in non-blood relatives, such as spouses.

These first-degree relatives were cognitively normal and age 65 or less — many of them too young for symptoms of LOAD to show up.

"These results indicate that genetic factors of substantial magnitude lead to significant elevations of Aß in the blood of asymptomatic, young individuals from extended LOAD families," says the study's lead investigator, Nilufer Ertekin-Taner, M.D., Ph.D. "This fits with our hypothesis that Ab levels rise years before development of the disorder."

The results, which first appeared online in October of last year, will be published in the Feb. 19 issue of Neurology.

The researchers have already identified three candidate genes on chromosome 10 that is associated with LOAD, and at least one of them, the gene that produces insulin degrading enzyme (IDE), is now regarded as a prime candidate for contributing to the disease. IDE degrades both insulin and amyloid protein, and scientists hypothesize that when there is too much insulin in the brain such as due to diabetes or lower expression levels of IDE, this may lead to toxic accumulation of Aß.

"We believe that 60 percent of the risk of developing the most common form of Alzheimer's disease is genetic, and a good part of that is APOE4. But other genes are certainly contributing, and they could provide a platform for diagnosis and therapy in the future," says the study's senior author, Neill Graff-Radford, M.B.B.Ch., FRCP.

Dr. Ertekin-Taner estimates that the impact of these three genes could be as large as APOE4, which is a variant of the APOE gene that has been linked to LOAD. "Between 30 percent and 70 percent of AD can be attributable to APOE, and we estimate this locus of three genes on chromosome 10 could be as important," she says. "The effect of the chromosome 10 locus could be due to multiple genes, with each gene having a smaller effect size than that of APOE."

This study represents a decade of work by the Mayo researchers, who have been instrumental in discovering that one form of Aß known as Aß42 is much more toxic than the other common form of Aß, which is Aß40. They have also demonstrated that as AD progresses, Aß42 levels that have been rising for years begin to decline, presumably because more and more of the protein is being deposited within the brain.

Now, all known forms of early onset AD caused by genetic mutations are associated with an elevation of Aß42, and because there are such strong genetic determinants of these rarer forms of AD, the Mayo researchers speculated that the common late onset form may also be caused, in part, by genes that raise Aß levels.

In 2000, the team, led by Dr. Ertekin-Taner, published findings in Science magazine that targeted chromosome 10 as the site of some of these genes, whose function was unknown at the time. They had made the discovery by looking at 10 families of LOAD patients, and two other non-Mayo research teams published similar findings. The Neurology study is a continuation, and expansion, of that discovery.

This time, Mayo researchers collected data on 25 extended multigenerational LOAD families. In addition they studied 103 first-degree relatives of AD patients as well as a group of 116 participants in the federally-funded Mayo Clinic Study of Aging, who served as their comparison group. None of the study participants have been diagnosed with AD. They selected younger first-degree relatives and controls (age 20-65) to study so as to minimize the effect of age on Aß levels, and they also tested participants for their APOE variant. In a series of sub-studies in control groups, the investigators confirmed that blood Aß levels stayed consistent over a period of weeks, and that both Aß40 and Aß42 levels rise significantly in people over age 65 who do not have dementia.

In the young, cognitively normal first-degree relatives of LOAD patients, they found that levels of both Aß40 and Aß42 in the blood were significantly elevated, compared to their spouses (which served as the control group). Studying the other group of 103 first-degree relatives of AD patients, the researchers also found significantly higher levels of Aß42.

Overall, comparing first-degree relatives with non-relatives, they found that for Ab42, the average level for the first-degree relatives is about 1.2–1.3 times that of non-relatives, and for Ab40, it was 1.1–1.4 times greater. Just like measuring cholesterol in the blood, the absolute magnitude of such an increase does not have to be large in order to be worrisome, Dr. Ertekin-Taner says.

They then determined that this rise in Aß is not due to the APOE4 gene. On the contrary, the plasma Aß levels of relatives with the APOE4 gene variant were lower — significantly so for Aß42 — than the levels of those who lacked the gene. This means two things, says co-author Steven Younkin, M.D., Ph.D.: that genetic factors other than the ones already known must lead to plasma Ab elevations in first-degree LOAD relatives, and that there is a strong mechanistic interaction between APOE4 and Ab leading to increased deposition of Ab in the brain and hence lower plasma Ab levels in these subjects.

"These findings indicate that there are genetic elevations in Aß levels in LOAD that cannot be explained by shared family environment," Dr. Younkin says.

The results also suggest that "it is conceivable that plasma Ab, along with other information such as genetic variants, neuroimaging and cognitive test results, may be used in the future to identify individuals at risk for developing AD, before the onset of disease symptoms," Dr. Ertekin-Taner says.

The study was funded by grants from the National Institutes of Health, the Mayo Clinic AD Research Center grant and a Robert H. and Clarice Smith Fellowship. Other authors include Linda Younkin, Ph.D., Debbie. Yaeger, B.Sc., Francine Parfitt, M.S.H., Matt Baker, B.Sc., Michael Hutton, Ph.D., all from Mayo Clinic Jacksonville at the time of the research; and Sanjay Asthana, M.D., FRCP, from the Wisconsin Alzheimer's Institute.

Cynthia Nelson | EurekAlert!
Further information:
http://www.mayoclinic.org/news

Further reports about: APOE4 Aß42 Chromosome Disease Ertekin-Taner LOAD Plasma apoE first-degree onset

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>