Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USC researchers identify mechanism that controls activation of stem cells during hair regeneration

18.01.2008
New 'dermal clock' signaling coordinates stem cell activity in a population of hair follicles

Researchers at the University of Southern California (USC) have identified a novel cyclic signaling in the dermis that coordinates stem cell activity and regulates regeneration in large populations of hairs in animal models. The signaling switch involves bone morphogenetic protein (Bmp) pathway, according to the study that will be published in the Jan. 17 issue of the journal Nature.

"Conceptually, the findings have important implications for stem cell research and in understanding how stem cell activity is regulated during regeneration," says Cheng-Ming Chuong, M.D., Ph.D., principal investigator and professor of pathology at the Keck School of Medicine of USC. "The research presents a new dimension for the regulation of hair re-growth and ultimately organ regeneration."

The hair is an important model for organ regeneration in mammals because it is one of the few organs that regenerate regularly, Chuong notes. Recent work in the field has established hair cycling as one of the mainstream models for organ regeneration. However, most of these works focus on the cyclic regeneration of one single hair follicle, he says.

... more about:
»Chuong »Regeneration »USC »activation »follicle

"Each of us has thousands of hair follicles. In our study, we were motivated to analyze the coordinative behavior of cyclic regeneration in a population of organs," Chuong says.

The research team found that hairs, even in normal mice, regenerate in waves, rather than individually. The findings suggest that hair stem cells are regulated not only by the micro-environment within one hair follicle -- as has previously been thought -- but also by adjacent hair follicles, other skin compartments and systemic hormones, in a hierarchical order.

At the molecular level, the findings showed that periodic expression of Bmp in the skin macro-environment appears to be at the center of the mechanism for coordinated hair stem cell activation. When many hairs regenerate, they must communicate activation signals among themselves. At different time points the macro-environment can be either permissive or suppressive for stem cell activation.

"Our research shows that the formation of new tissues or organs from stem cells -- such as the formation of new hairs -- can be more robust if it occurs in a permissive macro-environment," says Maksim Plikus, Ph.D., a post-doctoral fellow and the first author of the study. "I hope that our research will draw more attention to the hair follicle as the model for physiological regeneration in mammals, and as an abundant source of adult stem cells for the purposes of stem cell therapy."

"The work also has critical implications for research using the mouse skin as a model for tumor growth or drug delivery," Chuong notes. "Many of these studies assume the mouse skin is a homogeneous and stable environment for testing, but variations in results were obtained. Understanding this unexpected dynamics of the living mouse skin will help their experimental designs."

Meghan Lewit | EurekAlert!
Further information:
http://www.usc.edu

Further reports about: Chuong Regeneration USC activation follicle

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>