Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Tricky Tumor Virus: Epstein-Barr virus reprograms the biological properties of a signal protein of its host cells

18.01.2008
Viruses use many tricks to gain control over their host cells and to reprogram them to their own advantage. Dr. Arnd Kieser and his colleagues of the Department of Gene Vectors of the Helmholtz Zentrum München, Germany, were able to show in a recent publication in PloS Biology by which mechanism Epstein-Barr virus exploits a signal protein of its host cell, which normally mediates programmed cell death (apoptosis), in order to convert the cell into a cancer cell.

Epstein-Barr virus (EBV) is a human-pathogenic virus which belongs to the herpes virus family. Almost every adult carries EBV inside. With an infestation rate of more than 90 %, EBV is one of the most successful human viruses. Its viral genome consists of double-stranded DNA, and it is one of the few known viruses which cause cancer in humans under certain circumstances. EBV-associated cancers include lymphomas (cancer of the lymph nodes), nasopharyngeal carcinoma and gastric cancer.

A protein encoded by the virus, the latent membrane protein 1 (LMP1), is required for the uncontrolled proliferation of EBV-infected cells and, thus, the formation of cancer. Arnd Kieser and his team are studying the molecular mode of action of this EBV protein. LMP1 is a membrane-bound oncoprotein that binds certain signal molecules of its host cell and thereby critically contributes to the oncogenic transformation of the cells. One of these signal proteins is the factor TRADD. TRADD stands for TNF-receptor 1-associated death domain protein. The scientists used TRADD knockout cell lines which they had established by removing the TRADD gene from the genome of human B-cells in order to demonstrate that TRADD is an essential factor for LMP1 function. They found that in the absence of TRADD, LMP1 can no longer activate a cellular communication (also called: signal transduction) pathway which is crucial for cell transformation. However, TRADD's normal function within the cell includes the induction of programmed cell death which would be fatal for the virus. In fact, the scientists made the surprising observation that TRADD can no longer induce apoptosis if it is activated by the viral protein LMP1.

How does Epstein-Barr virus manage to switch off the apoptosis function of TRADD? Kieser and his colleagues discovered that the LMP1 protein possesses a unique TRADD binding domain which dictates an unusual TRADD interaction and prevents TRADD from transmitting cell death signals. Thus, LMP1 masks the apoptotic activity of TRADD. This viral TRADD-binding domain consists of the 16 carboxyterminal amino acids of the LMP1 protein and can be transplanted to cellular receptor proteins where it shows the same effects.

... more about:
»EBV »Epstein-Barr »Host »Kieser »LMP1 »TRADD

Hence, Epstein-Barr virus has found a unique molecular way to extinguish an undesired property of a cellular protein in order to adapt this protein to its own needs. This finding might also be the basis for a new therapeutic approach. Arnd Kieser explains: “Since the specific structure of the LMP1-TRADD interaction is most likely restricted to EBV-infected cells, it might serve as a target structure to develop specific inhibitors which interrupt the transforming signal cascade of the LMP1 oncogene.”

Michael van den Heuvel | alfa
Further information:
http://www.helmholtz-muenchen.de

Further reports about: EBV Epstein-Barr Host Kieser LMP1 TRADD

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>