Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Tricky Tumor Virus: Epstein-Barr virus reprograms the biological properties of a signal protein of its host cells

18.01.2008
Viruses use many tricks to gain control over their host cells and to reprogram them to their own advantage. Dr. Arnd Kieser and his colleagues of the Department of Gene Vectors of the Helmholtz Zentrum München, Germany, were able to show in a recent publication in PloS Biology by which mechanism Epstein-Barr virus exploits a signal protein of its host cell, which normally mediates programmed cell death (apoptosis), in order to convert the cell into a cancer cell.

Epstein-Barr virus (EBV) is a human-pathogenic virus which belongs to the herpes virus family. Almost every adult carries EBV inside. With an infestation rate of more than 90 %, EBV is one of the most successful human viruses. Its viral genome consists of double-stranded DNA, and it is one of the few known viruses which cause cancer in humans under certain circumstances. EBV-associated cancers include lymphomas (cancer of the lymph nodes), nasopharyngeal carcinoma and gastric cancer.

A protein encoded by the virus, the latent membrane protein 1 (LMP1), is required for the uncontrolled proliferation of EBV-infected cells and, thus, the formation of cancer. Arnd Kieser and his team are studying the molecular mode of action of this EBV protein. LMP1 is a membrane-bound oncoprotein that binds certain signal molecules of its host cell and thereby critically contributes to the oncogenic transformation of the cells. One of these signal proteins is the factor TRADD. TRADD stands for TNF-receptor 1-associated death domain protein. The scientists used TRADD knockout cell lines which they had established by removing the TRADD gene from the genome of human B-cells in order to demonstrate that TRADD is an essential factor for LMP1 function. They found that in the absence of TRADD, LMP1 can no longer activate a cellular communication (also called: signal transduction) pathway which is crucial for cell transformation. However, TRADD's normal function within the cell includes the induction of programmed cell death which would be fatal for the virus. In fact, the scientists made the surprising observation that TRADD can no longer induce apoptosis if it is activated by the viral protein LMP1.

How does Epstein-Barr virus manage to switch off the apoptosis function of TRADD? Kieser and his colleagues discovered that the LMP1 protein possesses a unique TRADD binding domain which dictates an unusual TRADD interaction and prevents TRADD from transmitting cell death signals. Thus, LMP1 masks the apoptotic activity of TRADD. This viral TRADD-binding domain consists of the 16 carboxyterminal amino acids of the LMP1 protein and can be transplanted to cellular receptor proteins where it shows the same effects.

... more about:
»EBV »Epstein-Barr »Host »Kieser »LMP1 »TRADD

Hence, Epstein-Barr virus has found a unique molecular way to extinguish an undesired property of a cellular protein in order to adapt this protein to its own needs. This finding might also be the basis for a new therapeutic approach. Arnd Kieser explains: “Since the specific structure of the LMP1-TRADD interaction is most likely restricted to EBV-infected cells, it might serve as a target structure to develop specific inhibitors which interrupt the transforming signal cascade of the LMP1 oncogene.”

Michael van den Heuvel | alfa
Further information:
http://www.helmholtz-muenchen.de

Further reports about: EBV Epstein-Barr Host Kieser LMP1 TRADD

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>