Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Tricky Tumor Virus: Epstein-Barr virus reprograms the biological properties of a signal protein of its host cells

18.01.2008
Viruses use many tricks to gain control over their host cells and to reprogram them to their own advantage. Dr. Arnd Kieser and his colleagues of the Department of Gene Vectors of the Helmholtz Zentrum München, Germany, were able to show in a recent publication in PloS Biology by which mechanism Epstein-Barr virus exploits a signal protein of its host cell, which normally mediates programmed cell death (apoptosis), in order to convert the cell into a cancer cell.

Epstein-Barr virus (EBV) is a human-pathogenic virus which belongs to the herpes virus family. Almost every adult carries EBV inside. With an infestation rate of more than 90 %, EBV is one of the most successful human viruses. Its viral genome consists of double-stranded DNA, and it is one of the few known viruses which cause cancer in humans under certain circumstances. EBV-associated cancers include lymphomas (cancer of the lymph nodes), nasopharyngeal carcinoma and gastric cancer.

A protein encoded by the virus, the latent membrane protein 1 (LMP1), is required for the uncontrolled proliferation of EBV-infected cells and, thus, the formation of cancer. Arnd Kieser and his team are studying the molecular mode of action of this EBV protein. LMP1 is a membrane-bound oncoprotein that binds certain signal molecules of its host cell and thereby critically contributes to the oncogenic transformation of the cells. One of these signal proteins is the factor TRADD. TRADD stands for TNF-receptor 1-associated death domain protein. The scientists used TRADD knockout cell lines which they had established by removing the TRADD gene from the genome of human B-cells in order to demonstrate that TRADD is an essential factor for LMP1 function. They found that in the absence of TRADD, LMP1 can no longer activate a cellular communication (also called: signal transduction) pathway which is crucial for cell transformation. However, TRADD's normal function within the cell includes the induction of programmed cell death which would be fatal for the virus. In fact, the scientists made the surprising observation that TRADD can no longer induce apoptosis if it is activated by the viral protein LMP1.

How does Epstein-Barr virus manage to switch off the apoptosis function of TRADD? Kieser and his colleagues discovered that the LMP1 protein possesses a unique TRADD binding domain which dictates an unusual TRADD interaction and prevents TRADD from transmitting cell death signals. Thus, LMP1 masks the apoptotic activity of TRADD. This viral TRADD-binding domain consists of the 16 carboxyterminal amino acids of the LMP1 protein and can be transplanted to cellular receptor proteins where it shows the same effects.

... more about:
»EBV »Epstein-Barr »Host »Kieser »LMP1 »TRADD

Hence, Epstein-Barr virus has found a unique molecular way to extinguish an undesired property of a cellular protein in order to adapt this protein to its own needs. This finding might also be the basis for a new therapeutic approach. Arnd Kieser explains: “Since the specific structure of the LMP1-TRADD interaction is most likely restricted to EBV-infected cells, it might serve as a target structure to develop specific inhibitors which interrupt the transforming signal cascade of the LMP1 oncogene.”

Michael van den Heuvel | alfa
Further information:
http://www.helmholtz-muenchen.de

Further reports about: EBV Epstein-Barr Host Kieser LMP1 TRADD

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>