Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome Scan Shows Polynesians Have Little Genetic Relationship To Melanesians

18.01.2008
The origins and current genetic relationships of Pacific Islanders have generated interest and controversy for many decades. A new comprehensive genetic study of almost 1,000 individuals has now revealed that Polynesians and Micronesians have almost no genetic relation to Melanesians, and that groups that live in the islands of Melanesia are remarkably diverse.

The study, conducted by researchers from Temple University, University of Maryland, Yale University, Binghamton University, the Marshfield Clinic Research Foundation, Victoria University in New Zealand, Mackay Memorial Hospital in Taiwan, and the Institute for Medical Research in Papua New Guinea, is described in “The Genetic Structure of Pacific Islanders” in the January issue of PLoS Genetics (http://www.plosgenetics.org/).

The researchers analyzed more than 800 genetic markers (highly informative microsatellites) in nearly 1,000 individuals from 41 Pacific populations, as opposed to prior small-scale mitochondrial DNA or Y chromosome studies, which had produced conflicting results.

“The first settlers of Australia, New Guinea, and the large islands just to the east arrived between 50,000 and 30,000 years ago, when Neanderthals still roamed Europe,” says Jonathan Friedlaender, professor emeritus of anthropology at Temple and the study’s lead author. “These small groups were isolated and became extremely diverse during the following tens of thousands of years. Then, a little more than 3,000 years ago, the ancestors of the Polynesians and Micronesians, with their excellent sailing outrigger canoes, appeared in the islands of Melanesia, and during the following centuries settled the islands in the vast unknown regions of the central and eastern Pacific.”

... more about:
»Genetic »Melanesia »Polynesian »ancestors

He adds: “Over the last 20 years there have been many hypotheses concerning where the ancestors of the Polynesians came from in Asia, how long it took them to develop their special seafaring abilities in Island Melanesia, and how much they interacted with the native Melanesian peoples there before they commenced their remarkable Diaspora across the unexplored islands in the Pacific.”

According to Friedlaender, one scenario called the “fast train hypothesis,” which is supported by the mitochondrial evidence, suggests that ancestors of the Polynesians originated in Taiwan, moved through Indonesia to Island Melanesia, and then out into the unknown islands of the Pacific without having any significant contact with the Island Melanesians along the way.

A counter argument called “slow boat hypothesis,” which the Y chromosome evidence supports, suggests that the ancestors of the Polynesians were primarily Melanesians, and that there was very little Asian or Taiwanese influence. A third position, called the “entangled bank hypothesis,” suggests these ancient migrations simply cannot be accurately reconstructed by looking at the genetics of today’s populations, even in the context of the available archaeological evidence.

In their paper, the researchers state that their analysis is consistent with the scenario that the ancestors of Polynesians moved through Island Melanesia relatively rapidly and only intermixed to a very modest degree with the indigenous populations there.

“Our genetic analysis establishes that the Polynesians’ and Micronesians’ closest relationships are to Taiwan Aborigines and East Asians,” says Friedlaender. “Some groups in Island Melanesia who speak languages related to Polynesian, called Austronesian or Oceanic languages, do show a small Polynesian genetic contribution, but it is very minor – never more than 20 percent. There clearly was a lot of cultural and language influence that occurred, but the amount of genetic exchange between the groups along the way was remarkably low,” he says. “From the genetic perspective, if the ancestral train from the Taiwan vicinity to Polynesia wasn’t an express, very few passengers climbed aboard or got off along the way.”

Friedlaender adds that this study also confirms and expands their findings from previous studies about the genetic diversity of Island Melanesians – among the most genetically diverse people on the planet, showing further that their diversity is neatly organized by island, island size, topography and language families.

The study was funded by grants from the National Science Foundation, the Wenner-Gren Foundation for Anthropological Research, the National Geographic Society, The National Institutes of Health, Taiwan National Science Council, and Temple, Binghamton, and Yale Universities.

Andrew Hyde | alfa
Further information:
http://genetics.plos.org
http://www.plosgenetics.org/

Further reports about: Genetic Melanesia Polynesian ancestors

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>