Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team finds an economical way to boost the vitamin a content of maize

17.01.2008
A team of plant geneticists and crop scientists has pioneered an economical approach to the selective breeding of maize that can boost levels of provitamin A, the precursors that are converted to vitamin A upon consumption. This innovation could help to enhance the nutritional status of millions of people in the developing world.

The new method is described this week in the journal Science.

The team includes scientists from Cornell University, the University of Illinois, Boyce Thompson Institute, DuPont Crop Genetics Research, the University of North Carolina, the City University of New York, the International Maize and Wheat Improvement Center and the U.S. Department of Agriculture.

The innovation involves a new approach for selecting the parent stock for breeding maize, and significantly reduces the ambiguity and expense of finding varieties that yield the highest provitamin A content available. As part of this investigation, the researchers have identified a naturally mutated enzyme that enhances the provitamin A content of maize.

... more about:
»CONTENT »Provitamin »allele »precursors »varieties

Vitamin A deficiency is a leading cause of eye disease and other health disorders in the developing world. Some 40 million children are afflicted with eye disease, and another 250 million suffer with health problems resulting from a lack of dietary vitamin A.

“Maize is the dominant subsistence crop in much of Sub-Saharan Africa and the Americas,” the researchers write, “where between 17 and 30 percent of children under the age of 5 are vitamin A deficient.”

Maize also is one of the most genetically diverse food crops on the planet, said Torbert Rocheford, a professor of nutritional sciences at Illinois and a corresponding author on the paper.

This diversity is tantalizing to those hoping to make use of desirable traits, but it also provides a formidable challenge in trying to understand the genetic basis of those attributes.

One hurdle to increasing the provitamin A content of maize has been the expense of screening the parent stock and progeny of breeding experiments, Rocheford said.

A common technique, called high performance liquid chromatography (HPLC), can assess the provitamin A content of individual plant lines. But screening a single sample costs $50 to $75, he said.

“That’s really expensive, especially since plant breeders like to screen hundreds or more plants per cycle, twice a year,” he said. “The cost was just prohibitive.”

The new approach uses much more affordable methods and gives a more detailed picture of the genetic endowment of individual lines. One technique the researchers employed, called quantitative trait loci (QTL) mapping, allowed them to identify regions of the maize chromosomes that influence production of the precursors of vitamin A. They also used association mapping, which involves studying variation in selected genes and tracking inheritance patterns to see which form of a gene coincides with the highest provitamin A content. Polymerase chain reaction (PCR) allowed them to amplify and sequence the different versions (alleles) of the genes of interest, to find the alleles that boosted levels of vitamin A precursors in the plant.

This approach led to an important discovery. The team found a mutant form of an enzyme vital to the cascade of chemical reactions that produce the precursors of vitamin A in the plant. This mutant is transcribed in lower quantities than the normal allele and steers the biochemistry toward producing higher levels of vitamin A precursors.

The study analyzed 300 genetic lines selected to represent the global diversity of maize, and identified some varieties that came close to the target amount of 15 micrograms of beta-carotene (a form of provitamin A) per gram. Current maize varieties consumed in Africa can have provitamin A content as low as 0.1 micrograms per gram.

The researchers can now inexpensively screen different maize varieties for this allele and breed those that contain it to boost the nutritional quality of the maize, said Rocheford, who also is affiliated with the Institute for Genomic Biology.

Diana Yates | University of Illinois
Further information:
http://www.uiuc.edu

Further reports about: CONTENT Provitamin allele precursors varieties

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>