Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular evolution of limb length

15.01.2008
In the January 15th issue of G&D, a research team led by Dr. Richard Behringer at MD Anderson Cancer Center reports that they have successfully switched the mouse Prx1 gene regulatory element with the Prx1 gene regulatory region from a bat – and although these two species are separated by millions of years of evolution -- the resulting transgenic mice displayed abnormally long forelimbs.

While forelimb length is just one of several key morphological changes that occurred during the evolution of the bat wing, this unprecedented finding demonstrates that evolution can be driven by changes in the patterns of gene expression, rather than solely by changes in the genes, themselves.

Prx1 is a paired-box homeodomain transcription factor, with an established role in limb bone growth. Dr. Behringer and colleagues identified a conserved Prx1 enhancer domain, which regulates expression of Prx1 in the developing forelimb.

To study the evolutionary contribution of the Prx1 enhancer to the morphological differences between the bat and mouse forelimb, Dr. Behringer and colleagues replaced the endogenous mouse Prx1 enhancer with that of the bat. The transgenic mice showed higher expression levels of Prx1 in the perichondrium, increased chondrocyte proliferation, and ultimately, longer forelimbs.

... more about:
»Evolution »Prx1 »enhancer »forelimb

Dr. Behringer describes the significance of his finding as such: “Darwin suggested that "successive slight modifications" would ultimately result in the evolution of diverse limb morphologies, like a hand, wing, or fin. The genetic change we engineered in mice may be one of those "slight modifications" to evolve a mammalian wing.”

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.edu

Further reports about: Evolution Prx1 enhancer forelimb

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>