Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Create Crystal Möbius Strip

24.05.2002


Image: Courtesy of Taku Tsuneta and Syujiro Mori


A signature of arts and crafts sessions, the Möbius strip--a seemingly endless ribbon with only one side and one edge that can be made from construction paper and sticky tape--has been given a new look. According to a report published today in the journal Nature, scientists have succeeded in growing crystals in the form of Möbius structures.

A piece of ribbon or paper can be twisted and turned easily, so a regular Möbius strip itself is no great feat of engineering. Crystals, in contrast, contain an inherently rigid structure. To manufacture their miniature Möbius strips, Satoshi Tanda of Hokkaido University in Japan and his colleagues placed a mixture of selenium (Se) and niobium (Nb) powder in a quartz tube and heated it to temperatures greater than 700 degrees Celsius. Under these conditions, Se changes among vapor, mist and liquid phases. The tiny drops of liquid selenium acted as spools on which the strips formed (see image). As the crystals of NbSe3 grew, they wrapped around the droplet and the two ends met, making a seamless ring the diameter of a human hair. By changing the growing conditions, the researchers coaxed the crystals into twisting either once, resulting in a Möbius strip, or twice, which created a "figure-of-eight" crystal strip.

Exactly what these mini Möbius strips could be used for is unclear. But the scientists suggest that strips of different sizes could be manufactured by varying the size of the liquid drops, and they have already applied their technique to a number of other compounds. The authors propose that these strangely shaped crystals could aid studies of the quantum mechanical effects of surface features.


Sarah Graham | Scientific American

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>