Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists Create Crystal Möbius Strip


Image: Courtesy of Taku Tsuneta and Syujiro Mori

A signature of arts and crafts sessions, the Möbius strip--a seemingly endless ribbon with only one side and one edge that can be made from construction paper and sticky tape--has been given a new look. According to a report published today in the journal Nature, scientists have succeeded in growing crystals in the form of Möbius structures.

A piece of ribbon or paper can be twisted and turned easily, so a regular Möbius strip itself is no great feat of engineering. Crystals, in contrast, contain an inherently rigid structure. To manufacture their miniature Möbius strips, Satoshi Tanda of Hokkaido University in Japan and his colleagues placed a mixture of selenium (Se) and niobium (Nb) powder in a quartz tube and heated it to temperatures greater than 700 degrees Celsius. Under these conditions, Se changes among vapor, mist and liquid phases. The tiny drops of liquid selenium acted as spools on which the strips formed (see image). As the crystals of NbSe3 grew, they wrapped around the droplet and the two ends met, making a seamless ring the diameter of a human hair. By changing the growing conditions, the researchers coaxed the crystals into twisting either once, resulting in a Möbius strip, or twice, which created a "figure-of-eight" crystal strip.

Exactly what these mini Möbius strips could be used for is unclear. But the scientists suggest that strips of different sizes could be manufactured by varying the size of the liquid drops, and they have already applied their technique to a number of other compounds. The authors propose that these strangely shaped crystals could aid studies of the quantum mechanical effects of surface features.

Sarah Graham | Scientific American

More articles from Life Sciences:

nachricht Generation of a Stable Biradical
22.03.2018 | Julius-Maximilians-Universität Würzburg

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>