Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Buffer Resists pH Change, Even As Temperature Drops

15.01.2008
Researchers at the University of Illinois have found a simple solution to a problem that has plagued scientists for decades: the tendency of chemical buffers used to maintain the pH of laboratory samples to lose their efficacy as the samples are cooled.

The research team, headed by chemistry professor Yi Lu, developed a method to formulate a buffer that maintains a desired pH at a range of low temperatures. The study appears this month in Chemical Communications.

Scientists have known since the 1930s that the pH of chemical buffers that are used to maintain the pH of lab samples can change as those samples are cooled, with some buffers raising and others lowering pH in the cooling process.

Freezing is a standard method for extending the shelf life of biological specimens and pharmaceuticals, and biological samples are routinely cooled to slow chemical reactions in some experiments. Even tiny changes in the acidity or alkalinity of a sample can influence its properties, Lu said.

... more about:
»Sieracki »sample

“We like to freeze proteins, nucleic acids, pharmaceutical drugs and other biomolecules to keep them a long time and to study them more readily under very low temperatures using different spectroscopic techniques and X-ray crystallography,” Lu said. “But when the pH changes at low temperature, the sample integrity can change.”

Graduate student Nathan Sieracki demonstrated this by repeatedly freezing and thawing oxacillin, a penicillin analog used to treat infections.

“After one freeze-thaw 50 percent of the drug was dead in several of the buffers investigated,” Sieracki said.

Sieracki was able to demonstrate that the loss of activity was due to changes in pH and not a result of the temperature changes.

To find a buffer that would maintain a stable pH at varying temperatures, Sieracki first evaluated the behavior of several commonly used buffers over a range of temperatures. He saw that some buffers became more alkaline at lower temperatures while others grew more acidic.

These observations led to an obvious methodology: “Why don’t we just mix them together?” Sieracki said.

Little by little, he varied the proportions of the combined buffers until he found a formula that exhibited minimal pH changes at a variety of temperatures. Instead of registering changes of 2 or more pH units while cooling, which was typical of some standard buffers, the new formula changed less than 0.2 pH units during cooling, he said.

“We’re canceling out 100-fold changes in proton concentration and bringing them down within an order of magnitude,” Sieracki said.

The creation of a temperature-independent pH (TIP) buffer could have broad implications for new – and previously published – research, Lu said.

“We’re not in the business of looking at the literature and correcting other mistakes,” he said. “But some of the conclusions from previous studies could be on shaky ground if a buffer was used that changed pH dramatically at low temperatures.”

The new buffer is immediately useful for biological research, and Sieracki said he is confident that a similar buffer could be made for use in many fields, such as biochemistry, biophysics, chemical biology and biomedical research.

Lu also is affiliated with the Beckman Institute.

Editor’s note: To reach Yi Lu, call 217-333-2619; e-mail: yi-lu@uiuc.edu

Diana Yates | University of Illinois
Further information:
http://www.uiuc.edu
http://www.news.uiuc.edu/news/08/0114buffer.html

Further reports about: Sieracki sample

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>